DOI QR코드

DOI QR Code

Effects of Alpha Phase on the Fatigue Properties of Fe-29%Ni-17%Co Low Thermal Expansion Alloy

Fe-29%Ni-17%Co 저열팽창 합금의 피로 특성에 미치는 알파상의 영향

  • Kim, Min-Jong (Dept. of Advanced Mater. Eng., Andong National University) ;
  • Gwon, Jin-Han (Dept. of Advanced Mater. Eng., Andong National University) ;
  • Cho, Kyu-Sang (Railway Vehicles Engineering, Dongyang University) ;
  • Lee, Kee-Ahn (Dept. of Advanced Mater. Eng., Andong National University)
  • 김민종 (국립 안동대학교 신소재공학부) ;
  • 권진한 (국립 안동대학교 신소재공학부) ;
  • 조규상 (동양대학교 철도차량학과) ;
  • 이기안 (국립 안동대학교 신소재공학부)
  • Received : 2014.06.16
  • Accepted : 2014.08.12
  • Published : 2014.09.27

Abstract

The effect of alpha phase on the fatigue properties of Fe-29%Ni-17%Co low thermal expansion alloy was investigated. Two kinds of alloys (Base alloy and Alpha alloy) were prepared by controlling the minimal alloy composition. Microstructure observation, tensile, high-cycle fatigue, and low-cycle fatigue results were measured in this study. The Base alloy microstructure showed typical austenite ${\gamma}$ phase. Alpha alloy represented the dispersed phase in the austenite ${\gamma}$ matrix. As a result of tensile testing, Alpha alloy was found to have higher strengths (Y.S. & T.S.) and lower elongation compared to those of the Base alloy. High cycle fatigue results showed that Alpha alloy had a higher fatigue limit (360MPa) than that (330MPa) of the Base alloy. The Alpha alloy exhibited the superior high cycle fatigue property in all of the fatigue stress conditions. SEM fractography results showed that the alpha phase could act to effectively retard both fatigue crack initiation and crack propagation. In the case of low-cycle fatigue, the Base alloy had longer fatigue life in the high plastic strain amplitude region and the Alpha alloy showed better fatigue property only in the low plastic strain amplitude region. The fatigue deformation behavior of the Fe-29%Ni-17%Co alloy was also discussed as related with its microstructure.

Keywords

References

  1. H. Scott, Trans. Am. Inst. Min. Met. Eng., 89, 506 (1930).
  2. B. Gehrmann, U. Heubner, A. Kolb-Telieps and E. F. Wassemann, International Symposium on the Invar Effect (Cincinnati, OH, October 1996). ed. E. J. Wittenauer (The Minerals, Metals & Materials Society, Warrendale, PA, 1996) p.105
  3. L. L. Harner, International Symposium on the Low Thermal Expansion Alloys and Composites (Chicago, IL, November 1992). eds. J. J. Stephens and D. R. Fear (The Minerals, Metals & Materials Society, Warrendale, PA, 1994) p.3
  4. ASTM, 10.04, F15-78 (1993).
  5. B. S. Kim, M. H. Kim, S. W. Kim, D. K. Choi and Y. B. Son, J. Kor. Cer. Soc., 36, 1228 (1999).
  6. D. T. Rooney, N. T. Castello, M. Cibulsky, D. Abbott and D. Xie, Microelectronics Reliability, 44, 275 (2004). https://doi.org/10.1016/S0026-2714(03)00193-8
  7. Y. Zhao, C. Basaran, A. Cartwright and T. Dishongh, Mechanics of Materials, 32, 161 (2000). https://doi.org/10.1016/S0167-6636(99)00053-8
  8. C. Basaran and R. Chandaroy, Applied Mathematical Modelling, 22, 601 (1998). https://doi.org/10.1016/S0307-904X(98)10059-8
  9. J. H. Lee, H. J. Kim, I. K. Kang, H. S. Kim and H. G. Ahn, J. Kor. Inst. Met. & Mater., 31, 867 (1993).
  10. W. F. Schlosser, J. Phys. Chem. Solids, 32, 939 (1971). https://doi.org/10.1016/S0022-3697(71)80339-6
  11. A. I. Zakharov, T. A. Kravchenko and D. S. Barkaya, Met. Sci. Heat Treat., 30, 129 (1988).
  12. K. S. Dogra, International Symposium on the Low Thermal Expansion Alloys and Composites (Chicago, IL, November 1992). eds. J. J. Stephens and D. R. Fear (The Minerals, Metals & Materials Society, Warrendale, PA, 1994) p.113
  13. J. H. Riggs, International Symposium for Testing and Failure Analysis (Los Angeles, CA, October 1990). (ASM International, Materials Park, OH, 1990) p.301
  14. J. A. Wasynczuk, W. D. Hanna, F. D. Ross and T. A. Freitag, Fatigue of Electronic Materials, p.110, ASTM International, Atlanta, USA (1994).
  15. S. S. Manson and M. H. Hirschberg, Fatigue: An Interdisciplinary Approach, p.133, Syracuse University Press, N.Y., USA (1964).
  16. M. Deters and J. C. Williams, Metall. Trans. A, 15A, 1588 (1984).
  17. S. Suresh and R. O. Ritchie, International Metals Reviews, 29, 445 (1984).
  18. S. G. S. Raman and K. A. Padmanabhan, Mater. Sci. and Tech., 10, 614 (1994). https://doi.org/10.1179/mst.1994.10.7.614
  19. S. R. Mediratta, V. Ramaswamy, V. Singh and P. R. Rao, Scr. Metall., 24, 793 (1990). https://doi.org/10.1016/0956-716X(90)90244-B
  20. A. Aran and H. Turker, J. Mater. Sci. Letters, 9, 1407 (1990). https://doi.org/10.1007/BF00721598