DOI QR코드

DOI QR Code

Properties and Fabrication of Nanostructured 2/3 Cr-ZrO2 Composite for Artificial Joint by Rapid Sinerting

급속 소결에 의한 인공관절용 나노구조 2/3 Cr-ZrO2 복합재료 제조 및 특성

  • Kang, Hyun-Su (Division of Advanced Materials Engineering and the Research Center of Hydrogen and Fuel Cell, Engineering College, Chonbuk National University) ;
  • Kang, Bo-Ram (Division of Advanced Materials Engineering and the Research Center of Hydrogen and Fuel Cell, Engineering College, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and the Research Center of Hydrogen and Fuel Cell, Engineering College, Chonbuk National University)
  • 강현수 (전북대학교 신소재공학부 수소연료전지 연구센터) ;
  • 강보람 (전북대학교 신소재공학부 수소연료전지 연구센터) ;
  • 손인진 (전북대학교 신소재공학부 수소연료전지 연구센터)
  • Received : 2014.06.30
  • Accepted : 2014.08.19
  • Published : 2014.09.27

Abstract

Despite having many attractive properties, $ZrO_2$ ceramic has a low fracture toughness which limits its wide application. One of the most obvious tactics to improve its mechanical properties has been to add a reinforcing agent to formulate a nanostructured composite material. Nanopowders of $ZrO_2$ and Cr were synthesized from $CrO_3$ and Zr powder by high energy ball milling for 10 h. Dense nanocrystalline $2/3Cr-ZrO_2$ composite was consolidated by a high-frequency induction heated sintering method within 5 min at $600^{\circ}C$ from mechanically synthesized powder. The method was found to enable not only rapid densification but also the inhibition of grain growth, preserving the nano-scale microstructure. Highly dense $2/3Cr-ZrO_2$ composite with relative density of up to 99.5% was produced under simultaneous application of a 1 GPa pressure and the induced current. The hardness and fracture toughness of the composite were 534 kg/mm2 and $7MPa{\cdot}m1/2$, respectively. The composite was determined to have good biocompatibility.

Keywords

References

  1. M. N. Rahaman and A. Yao, J. Am. Ceram. Soc., 90(7), 1965 (2007). https://doi.org/10.1111/j.1551-2916.2007.01725.x
  2. A. I. Y. Tok, L. H. Luo and F. Y. C. Boey, Mater. Sci. Eng., A. 383, 229 (2004). https://doi.org/10.1016/j.msea.2004.05.071
  3. I. J. Shon, G. W. Lee, J. M. Doh and J. K. Yoon, Electron. Mater. Lett., 9, 219 (2013). https://doi.org/10.1007/s13391-012-2142-7
  4. W. Kim, C. Y. Suh, K. M. Roh, J. W. Lim, H. B. Shim, H. K. Park and I. J. Shon, Korean J. Met. Mater., 50, 861 (2012).
  5. N. R. Park, K. I. Na, H. J. Kwon, J. W. Lim and I. J. Shon, Korean J. Met. Mater., 51, 753 (2013). https://doi.org/10.3365/KJMM.2013.51.10.753
  6. I. J. Shon, S. L. Du, J. M. Doh and J. K. Yoon, Met. Mater. Int., 19, 1041 (2013). https://doi.org/10.1007/s12540-013-5017-z
  7. N. R. Kim, S. W. Cho, W. Kim and I. J. Shon, Korean J. Met. Mater., 50, 34 (2012). https://doi.org/10.3365/KJMM.2012.50.1.034
  8. C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  9. O. Knake, O. Kubaschewski and K. Hesselmann, Thermochemical Properties of Inorganic Substances, Springer- Verlag, New York (1991).
  10. Z. Shen, M. Johnsson, Z. Zhao and M. Nygren, J. Am. Ceram. Soc., 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  11. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade and P. Asoka- Kumar, Appl. Phys. Lett., 85, 573 (2004). https://doi.org/10.1063/1.1774268
  12. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini and Z. A. Munir, Intermetallics, 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  13. J. E. Garay, U. Anselmi-Tamburini and Z. A. Munir, Acta Mater., 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  14. R. Raj, M. Cologna and J. S. C. Francis, J. Am. Ceram. Soc., 94(7) 1941 (2011). https://doi.org/10.1111/j.1551-2916.2011.04652.x
  15. R. L. Coble, J. Appl. Phys., 41, 4798 (1970). https://doi.org/10.1063/1.1658543
  16. I. J. Shon, D. H. Rhon and H. C. Kim, Met. Mater., 6, 533 (2000). https://doi.org/10.1007/BF03028095
  17. G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Am. Ceram. Soc., 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  18. S. G. Huang, J. Eur. Ceram. Soc., 27, 3269 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.079
  19. S. M. Kwak, H. K. Park and I. J. Shon, Korean J. Met. Mater., 51, 314 (2013).