DOI QR코드

DOI QR Code

Effect of Grid, Turbulence Modeling and Discretization on the Solution of CFD

격자, 난류모형 및 이산화 방법이 유동해석 결과에 미치는 영향

  • Park, Dong-Woo (Dept. of Naval Architecture & Ocean Engineering, Tongmyong University) ;
  • Yoon, Hyun-Sik (Global Core Research Center for Ships and Offshore Plants, Pusan National University)
  • 박동우 (동명대학교 조선해양공학과) ;
  • 윤현식 (부산대학교 조선해양플랜트글로벌핵심연구센터)
  • Received : 2014.04.11
  • Accepted : 2014.08.27
  • Published : 2014.08.31

Abstract

The current work investigated the variation of numerical solutions according to the grid number, the distance of the first grid point off the ship surface, turbulence modeling and discretization. The subject vessel is KVLCC. A commercial code, Gridgen V15 and FLUENT were used the generation of the ship hull surface and spatial system and flow computation. The first part of examination, the effect of solutions were accessed depending on the grid number, turbulence modeling and discretization. The second part was focus on the suitable selection of the distance of the first grid point off the ship surface: $Y_P+$. When grid number and discretization were fixed the same value, the friction resistance showed differences within 1 % but the pressure resistance showed big differences 9 % depending on the turbulence modeling. When $Y_P+$ were set 30 and 50 for the same discretization, friction resistance showed almost same results within 1 % according to the turbulence modeling. However, when $Y_P+$ were fixed 100, friction resistance showed more differences of 3 % compared to $Y_P+$ of 30 and 50. Whereas pressure resistance showed big differences of 10 % regardless of turbulence modeling. When turbulence modeling and discretization were set the same value, friction, pressure and total resistance showed almost same result within 0.3 % depending on the grid number. Lastly, When turbulence modeling and discretization were fixed the same value, the friction resistance showed differences within 5~8 % but the pressure resistance showed small differences depending on the $Y_P+$.

본 연구는 격자수, 첫 번째 격자까지의 거리($Y_P+$), 난류모델 그리고 이산화 방법에 따른 해의 변화량을 조사하였다. 대상선박은 KVLCC이며, 격자구성과 유동해석은 상용코드인 Gridgen V15와 FLUENT를 사용하였다. 검토는 2가지 파트로 나누어서 수행하였다. 첫 번째 파트는 격자수, 난류모델 그리고 이산화 방법의 조합에 따른 해의 영향성을 평가하였다. 두 번째 파트는 적합한 $Y_P+$ 선정에 초점을 두었다. 격자수와 이산화 방법이 동일한 경우 마찰저항은 난류모델에 따라 약 1 % 내에서 차이를 보였으나, 압력저항은 약 9 %의 큰 차이를 보였다. $Y_P+$와 이산화 방법이 동일한 경우 $Y_P+$를 30과 50으로 설정하였을 때 마찰저항은 난류모델에 따라 약 1 % 내에서 차이를 보였으나, 100에서는 약 3 % 차이를 보였다. 반면, 압력저항은 $Y_P+$값에 무관하게 난류모델에 따라 약 10 % 차이를 보였다. 난류모델과 이산화 방법이 동일한 경우 격자 수 변화 따라 마찰저항, 압력저항 그리고 전 저항 모두 큰 차이를 보이지 않았다. 난류모델과 이산화 방법이 동일한 경우 $Y_P+$의 변화에 따라 마찰저항은 5~8 %의 큰 차이를 보였고, 압력저항은 큰 차이를 보이지 않았다.

Keywords

References

  1. Choi, J. K. and H. T. Kim(2010), A Study of using Wall Function for Numerical Analysis of High Reynolds Number Turbulent Flow, Journal of SNAK, Vol. 47, No. 5, pp. 647-655. https://doi.org/10.3744/SNAK.2010.47.5.647
  2. Fluent 6.3 User's Guide(2008), Fluent Inc.
  3. Kim, B. N., W. J. Kim, K. S. Kim and I. R. Park(2009), The Comparison of Flow Simulation Results around a KLNG, Journal of SNAK, Vol. 46, No. 3, pp. 219-231. https://doi.org/10.3744/SNAK.2009.46.3.219
  4. Nah, Y. I., H. D. Bang and J. C. Park(2010), Numerical Simulation of Turbulent Wake Behind SUBOFF Model, Journal of SNAK, Vol. 47, No. 4, pp. 512-524. https://doi.org/10.3744/SNAK.2010.47.4.517
  5. Yang, H. Y., B. N. Kim, J. H. Yoo and W. J. Kim(2010), Wake Comparison between Model and Full Scale Ships Using CFD, Journal of SNAK, Vol. 47, No. 2, pp. 150-162. https://doi.org/10.3744/SNAK.2010.47.2.150
  6. Wilson, R. V., F. Stern, H. Coleman and E. Paterson(2001), Comprehensive Approach to verification and Validation of CFD Simulations-Part2: Application for RANS Simulation of a Cargo/Container Ship, "ASME Journal of Fluids Engineering, Vol. 123, pp. 803-810. https://doi.org/10.1115/1.1412236

Cited by

  1. Development of Numerical Tank Using Open Source Libraries and Its Application vol.20, pp.6, 2014, https://doi.org/10.7837/kosomes.2014.20.6.746
  2. Assessment of the Resistance Performance of Hull Appendages Attached to Fishing Vessels Using CFD vol.24, pp.2, 2018, https://doi.org/10.7837/kosomes.2018.24.2.267
  3. 대한해협에서의 수온 및 염도변화를 고려한 선박의 저항성능 예측을 위한 기초 연구 vol.29, pp.6, 2014, https://doi.org/10.5574/ksoe.2015.29.6.418
  4. 미세먼지 포집장치 개발을 위한 관성충돌 프리필터 유동 전산해석 vol.10, pp.2, 2014, https://doi.org/10.5804/lhij.2019.10.2.053
  5. Comparative study on ship wave making resistance via viscous and IBEM solvers vol.241, pp.None, 2021, https://doi.org/10.1016/j.oceaneng.2021.110074