DOI QR코드

DOI QR Code

Cellular ubiquitin pool dynamics and homeostasis

  • Received : 2014.06.12
  • Published : 2014.09.30

Abstract

Ubiquitin (Ub) is a versatile signaling molecule that plays important roles in a variety of cellular processes. Cellular Ub pools, which are composed of free Ub and Ub conjugates, are in dynamic equilibrium inside cells. In particular, increasing evidence suggests that Ub homeostasis, or the maintenance of free Ub above certain threshold levels, is important for cellular function and survival under normal or stress conditions. Accurate determination of various Ub species, including levels of free Ub and specific Ub chain linkages, have become possible in biological specimens as a result of the introduction of the proteomic approach using mass spectrometry. This technology has facilitated research on dynamic properties of cellular Ub pools and has provided tools for in-depth investigation of Ub homeostasis. In this review, we have also discussed the consequences of the disruption of Ub pool dynamics and homeostasis via deletion of polyubiquitin genes or mutations of deubiquitinating enzymes. The common consequence was a reduced availability of free Ub and a significant impact on the function and viability of cells. These observations further indicate that the levels of free Ub are important determinants for cellular protection.

Keywords

References

  1. Hershko, A. and Ciechanover, A. (1998) The ubiquitin system. Annu. Rev. Biochem. 67, 425-479. https://doi.org/10.1146/annurev.biochem.67.1.425
  2. Hicke, L. (2001) Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell Biol. 2, 195-201. https://doi.org/10.1038/35056583
  3. Pickart, C. M. and Fushman, D. (2004) chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610-616. https://doi.org/10.1016/j.cbpa.2004.09.009
  4. Amerik, A. Y. and Hochstrasser, M. (2004) Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189-207. https://doi.org/10.1016/j.bbamcr.2004.10.003
  5. Komander, D., Clague, M. J. and Urbe, S. (2009) Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550-563. https://doi.org/10.1038/nrm2731
  6. Wiborg, O., Pedersen, M. S., Wind, A., Berglund, L. E., Marcker, K. A. and Vuust, J. (1985) The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 4, 755-759.
  7. Baker, R. T. and Board, P. G. (1991) The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucleic Acids Res. 19, 1035-1040. https://doi.org/10.1093/nar/19.5.1035
  8. Redman, K. L. and Rechsteiner, M. (1989) Identification of the long ubiquitin extension as ribosomal protein S27a. Nature 338, 438-440. https://doi.org/10.1038/338438a0
  9. Ohtani-Kaneko, R., Asahara, M., Takada, K., Kanda, T., Iigo, M., Hara, M., Yokosawa, H., Ohkawa, K. and Hirata, K. (1996) growth factor (NGF) induces increase in multi-ubiquitin chains and concomitant decrease in free ubiquitin in nuclei of PC12h. Neurosci. Res. 26, 349-355. https://doi.org/10.1016/S0168-0102(96)01117-0
  10. Ryu, K. Y., Baker, R. T. and Kopito, R. R. (2006) Ubiquitin-specific protease 2 as a tool for quantification of total ubiquitin levels in biological specimens. Anal. Biochem. 353, 153-155. https://doi.org/10.1016/j.ab.2006.03.038
  11. Fornace, A. J., Jr., Alamo, I., Jr., Hollander, M. C. and Lamoreaux, E. (1989) Ubiquitin mRNA is a major stress-induced transcript in mammalian cells. Nucleic Acids Res. 17, 1215-1230. https://doi.org/10.1093/nar/17.3.1215
  12. Bond, U. and Schlesinger, M. J. (1986) The chicken ubiquitin gene contains a heat shock promoter and expresses an unstable mRNA in heat-shocked cells. Mol. Cell. Biol. 6, 4602-4610. https://doi.org/10.1128/MCB.6.12.4602
  13. Reyes-Turcu, F. E., Ventii, K. H. and Wilkinson, K. D. (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363-397. https://doi.org/10.1146/annurev.biochem.78.082307.091526
  14. Yao, T. and Cohen, R. E. (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403-407. https://doi.org/10.1038/nature01071
  15. Verma, R., Aravind, L., Oania, R., McDonald, W. H., Yates, J. R., 3rd, Koonin, E. V. and Deshaies, R. J. (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611-615. https://doi.org/10.1126/science.1075898
  16. Swaminathan, S., Amerik, A. Y. and Hochstrasser, M. (1999) The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol. Biol. Cell 10, 2583-2594. https://doi.org/10.1091/mbc.10.8.2583
  17. Kimura, Y., Yashiroda, H., Kudo, T., Koitabashi, S., Murata, S., Kakizuka, A. and Tanaka, K. (2009) An inhibitor of a deubiquitinating enzyme regulates ubiquitin homeostasis. Cell 137, 549-559. https://doi.org/10.1016/j.cell.2009.02.028
  18. Vijay-Kumar, S., Bugg, C. E. and Cook, W. J. (1987) Structure of ubiquitin refined at 1.8 A resolution. J. Mol. Biol. 194, 531-544. https://doi.org/10.1016/0022-2836(87)90679-6
  19. Weissman, A. M., Shabek, N. and Ciechanover, A. (2011) The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nat. Rev. Mol. Cell Biol. 12, 605-620. https://doi.org/10.1038/nrm3173
  20. Anderson, C., Crimmins, S., Wilson, J. A., Korbel, G. A., Ploegh, H. L. and Wilson, S. M. (2005) Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J. Neurochem. 95, 724-731. https://doi.org/10.1111/j.1471-4159.2005.03409.x
  21. Leggett, D. S., Hanna, J., Borodovsky, A., Crosas, B., Schmidt, M., Baker, R. T., Walz, T., Ploegh, H. and Finley, D. (2002) Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495-507. https://doi.org/10.1016/S1097-2765(02)00638-X
  22. Lee, M. J., Lee, B. H., Hanna, J., King, R. W. and Finley, D. (2011) Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol. Cell. Proteomics 10, R110 003871. https://doi.org/10.1074/mcp.R110.003871
  23. Hanna, J., Meides, A., Zhang, D. P. and Finley, D. (2007) A ubiquitin stress response induces altered proteasome composition. Cell 129, 747-759. https://doi.org/10.1016/j.cell.2007.03.042
  24. Carlson, N., Rogers, S. and Rechsteiner, M. (1987) Microinjection of ubiquitin: changes in protein degradation in HeLa cells subjected to heat-shock. J. Cell Biol. 104, 547-555. https://doi.org/10.1083/jcb.104.3.547
  25. Dantuma, N. P., Groothuis, T. A., Salomons, F. A. and Neefjes, J. (2006) A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling. J. Cell Biol. 173, 19-26. https://doi.org/10.1083/jcb.200510071
  26. Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D. and Gygi, S. P. (2003) A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921-926. https://doi.org/10.1038/nbt849
  27. Kirkpatrick, D. S., Denison, C. and Gygi, S. P. (2005) Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat. Cell Biol. 7, 750-757. https://doi.org/10.1038/ncb0805-750
  28. Kirkpatrick, D. S., Gerber, S. A. and Gygi, S. P. (2005) The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 35, 265-273. https://doi.org/10.1016/j.ymeth.2004.08.018
  29. Bennett, E. J., Shaler, T. A., Woodman, B., Ryu, K. Y., Zaitseva, T. S., Becker, C. H., Bates, G. P., Schulman, H. and Kopito, R. R. (2007) Global changes to the ubiquitin system in Huntington's disease. Nature 448, 704-708. https://doi.org/10.1038/nature06022
  30. Kim, W., Bennett, E. J., Huttlin, E. L., Guo, A., Li, J., Possemato, A., Sowa, M. E., Rad, R., Rush, J., Comb, M. J., Harper, J. W. and Gygi, S. P. (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325-340. https://doi.org/10.1016/j.molcel.2011.08.025
  31. Udeshi, N. D., Mani, D. R., Eisenhaure, T., Mertins, P., Jaffe, J. D., Clauser, K. R., Hacohen, N. and Carr, S. A. (2012) Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol. Cell. Proteomics 11, 148-159. https://doi.org/10.1074/mcp.M111.016857
  32. Kaiser, S. E., Riley, B. E., Shaler, T. A., Trevino, R. S., Becker, C. H., Schulman, H. and Kopito, R. R. (2011) Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat. Methods 8, 691-696. https://doi.org/10.1038/nmeth.1649
  33. Newton, K., Matsumoto, M. L., Wertz, I. E., Kirkpatrick, D. S., Lill, J. R., Tan, J., Dugger, D., Gordon, N., Sidhu, S. S., Fellouse, F. A., Komuves, L., French, D. M., Ferrando, R. E., Lam, C., Compaan, D., Yu, C., Bosanac, I., Hymowitz, S. G., Kelley, R. F. and Dixit, V. M. (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134, 668-678. https://doi.org/10.1016/j.cell.2008.07.039
  34. Komander, D. (2009) The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 37, 937-953. https://doi.org/10.1042/BST0370937
  35. Ye, Y. and Rape, M. (2009) Building ubiquitin chains: E2 enzymes at work. Nat. Rev. Mol. Cell Biol. 10, 755-764. https://doi.org/10.1038/nrm2780
  36. Husnjak, K. and Dikic, I. (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 81, 291-322. https://doi.org/10.1146/annurev-biochem-051810-094654
  37. Xu, P., Duong, D. M., Seyfried, N. T., Cheng, D., Xie, Y., Robert, J., Rush, J., Hochstrasser, M., Finley, D. and Peng, J. (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133-145. https://doi.org/10.1016/j.cell.2009.01.041
  38. Finley, D., Ozkaynak, E. and Varshavsky, A. (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035-1046. https://doi.org/10.1016/0092-8674(87)90711-2
  39. Hanna, J., Leggett, D. S. and Finley, D. (2003) Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol. Cell. Biol. 23, 9251-9261. https://doi.org/10.1128/MCB.23.24.9251-9261.2003
  40. Ryu, K. Y., Maehr, R., Gilchrist, C. A., Long, M. A., Bouley, D. M., Mueller, B., Ploegh, H. L. and Kopito, R. R. (2007) The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. EMBO J. 26, 2693-2706. https://doi.org/10.1038/sj.emboj.7601722
  41. Park, H., Yoon, M. S. and Ryu, K. Y. (2013) Disruption of polyubiquitin gene Ubc leads to defective proliferation of hepatocytes and bipotent fetal liver epithelial progenitor cells. Biochem. Biophys. Res. Commun. 435, 434-440. https://doi.org/10.1016/j.bbrc.2013.05.003
  42. Ryu, K. Y., Fujiki, N., Kazantzis, M., Garza, J. C., Bouley, D. M., Stahl, A., Lu, X. Y., Nishino, S. and Kopito, R. R. (2010) Loss of polyubiquitin gene Ubb leads to metabolic and sleep abnormalities in mice. Neuropathol. Appl. Neurobiol. 36, 285-299.
  43. Ryu, K. Y., Garza, J. C., Lu, X. Y., Barsh, G. S. and Kopito, R. R. (2008) Hypothalamic neurodegeneration and adult-onset obesity in mice lacking the Ubb polyubiquitin gene. Proc. Natl. Acad. Sci. U.S.A. 105, 4016-4021. https://doi.org/10.1073/pnas.0800096105
  44. Ryu, K. Y., Sinnar, S. A., Reinholdt, L. G., Vaccari, S., Hall, S., Garcia, M. A., Zaitseva, T. S., Bouley, D. M., Boekelheide, K., Handel, M. A., Conti, M. and Kopito, R. R. (2008) The mouse polyubiquitin gene Ubb is essential for meiotic progression. Mol. Cell. Biol. 28, 1136-1146. https://doi.org/10.1128/MCB.01566-07
  45. Park, C. W., Ryu, H. W. and Ryu, K. Y. (2012) Locus coeruleus neurons are resistant to dysfunction and degeneration by maintaining free ubiquitin levels although total ubiquitin levels decrease upon disruption of polyubiquitin gene Ubb. Biochem. Biophys. Res. Commun. 418, 541-546. https://doi.org/10.1016/j.bbrc.2012.01.063
  46. Oh, C., Park, S., Lee, E. K. and Yoo, Y. J. (2013) Downregulation of ubiquitin level via knockdown of polyubiquitin gene Ubb as potential cancer therapeutic intervention. Sci. Rep. 3, 2623. https://doi.org/10.1038/srep02623
  47. Wilkinson, K. D., Lee, K. M., Deshpande, S., Duerksen-Hughes, P., Boss, J. M. and Pohl, J. (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246, 670-673. https://doi.org/10.1126/science.2530630
  48. Liu, Y., Fallon, L., Lashuel, H. A., Liu, Z. and Lansbury, P. T., Jr. (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell 111, 209-218. https://doi.org/10.1016/S0092-8674(02)01012-7
  49. Saigoh, K., Wang, Y. L., Suh, J. G., Yamanishi, T., Sakai, Y., Kiyosawa, H., Harada, T., Ichihara, N., Wakana, S., Kikuchi, T. and Wada, K. (1999) Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet. 23, 47-51.
  50. Gong, B., Cao, Z., Zheng, P., Vitolo, O. V., Liu, S., Staniszewski, A., Moolman, D., Zhang, H., Shelanski, M. and Arancio, O. (2006) Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Cell 126, 775-788. https://doi.org/10.1016/j.cell.2006.06.046
  51. Osaka, H., Wang, Y. L., Takada, K., Takizawa, S., Setsuie, R., Li, H., Sato, Y., Nishikawa, K., Sun, Y. J., Sakurai, M., Harada, T., Hara, Y., Kimura, I., Chiba, S., Namikawa, K., Kiyama, H., Noda, M., Aoki, S. and Wada, K. (2003) Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum. Mol. Genet. 12, 1945-1958. https://doi.org/10.1093/hmg/ddg211
  52. Wilson, S. M., Bhattacharyya, B., Rachel, R. A., Coppola, V., Tessarollo, L., Householder, D. B., Fletcher, C. F., Miller, R. J., Copeland, N. G. and Jenkins, N. A. (2002) Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat. Genet. 32, 420-425. https://doi.org/10.1038/ng1006
  53. Chen, P. C., Qin, L. N., Li, X. M., Walters, B. J., Wilson, J. A., Mei, L. and Wilson, S. M. (2009) The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J. Neurosci. 29, 10909-10919. https://doi.org/10.1523/JNEUROSCI.2635-09.2009
  54. Crimmins, S., Jin, Y., Wheeler, C., Huffman, A. K., Chapman, C., Dobrunz, L. E., Levey, A., Roth, K. A., Wilson, J. A. and Wilson, S. M. (2006) Transgenic rescue of ataxia mice with neuronal-specific expression of ubiquitin-specific protease 14. J. Neurosci. 26, 11423-11431. https://doi.org/10.1523/JNEUROSCI.3600-06.2006
  55. Bizzi, A., Schaetzle, B., Patton, A., Gambetti, P. and Autilio-Gambetti, L. (1991) Axonal transport of two major components of the ubiquitin system: free ubiquitin and ubiquitin carboxyl-terminal hydrolase PGP 9.5. Brain Res. 548, 292-299. https://doi.org/10.1016/0006-8993(91)91135-N
  56. Chen, P. C., Bhattacharyya, B. J., Hanna, J., Minkel, H., Wilson, J. A., Finley, D., Miller, R. J. and Wilson, S. M. (2011) Ubiquitin homeostasis is critical for synaptic development and function. J. Neurosci. 31, 17505-17513. https://doi.org/10.1523/JNEUROSCI.2922-11.2011
  57. Walters, B. J., Campbell, S. L., Chen, P. C., Taylor, A. P., Schroeder, D. G., Dobrunz, L. E., Artavanis-Tsakonas, K., Ploegh, H. L., Wilson, J. A., Cox, G. A. and Wilson, S. M. (2008) Differential effects of Usp14 and Uch-L1 on the ubiquitin proteasome system and synaptic activity. Mol. Cell. Neurosci. 39, 539-548. https://doi.org/10.1016/j.mcn.2008.07.028

Cited by

  1. Role of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy vol.48, pp.3, 2015, https://doi.org/10.5483/BMBRep.2015.48.3.242
  2. Molecular Dissection of the Human Ubiquitin C Promoter Reveals Heat Shock Element Architectures with Activating and Repressive Functions vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0136882
  3. Ubiquitin homeostasis: from neural stem cell differentiation to neuronal development vol.10, pp.8, 2015, https://doi.org/10.4103/1673-5374.162693
  4. Effect of cellular ubiquitin levels on the regulation of oxidative stress response and proteasome function via Nrf1 vol.485, pp.2, 2017, https://doi.org/10.1016/j.bbrc.2017.02.105
  5. PCB-126 effects on aryl hydrocarbon receptor, ubiquitin and p53 expression levels in a fish product (Sparus aurata L.) 2018, https://doi.org/10.1080/14786419.2017.1320794
  6. Conventional and unconventional ubiquitination in plant immunity 2017, https://doi.org/10.1111/mpp.12521
  7. Proteasomal and Autophagic Degradation Systems vol.86, pp.1, 2017, https://doi.org/10.1146/annurev-biochem-061516-044908
  8. Super-resolution microscopy reveals a preformed NEMO lattice structure that is collapsed in incontinentia pigmenti vol.7, 2016, https://doi.org/10.1038/ncomms12629
  9. Effects of PCB-126 on aryl hydrocarbon receptor, ubiquitin and p53 expression levels in Sparus aurata 2017, https://doi.org/10.1016/j.etp.2017.04.005
  10. HIF-1α Upregulation due to Depletion of the Free Ubiquitin Pool vol.30, pp.10, 2015, https://doi.org/10.3346/jkms.2015.30.10.1388
  11. Dynamic transcription of ubiquitin genes under basal and stressful conditions and new insights into the multiple UBC transcript variants vol.573, pp.1, 2015, https://doi.org/10.1016/j.gene.2015.07.030
  12. Dynamics of ubiquitin-mediated signalling: insights from mathematical modelling and experimental studies vol.17, pp.3, 2016, https://doi.org/10.1093/bib/bbv052
  13. Restoration of cellular ubiquitin reverses impairments in neuronal development caused by disruption of the polyubiquitin gene Ubb vol.453, pp.3, 2014, https://doi.org/10.1016/j.bbrc.2014.09.103
  14. Battling Alzheimer’s Disease: Targeting SUMOylation-Mediated Pathways vol.41, pp.3, 2016, https://doi.org/10.1007/s11064-015-1681-3
  15. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy vol.118, pp.2, 2015, https://doi.org/10.1152/japplphysiol.00624.2014
  16. Temporal downregulation of the polyubiquitin gene Ubb affects neuronal differentiation, but not maturation, in cells cultured in vitro vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-21032-6
  17. USP14 regulates DNA damage repair by targeting RNF168-dependent ubiquitination vol.14, pp.11, 2018, https://doi.org/10.1080/15548627.2018.1496877
  18. Cdc48 regulates a deubiquitylase cascade critical for mitochondrial fusion vol.7, pp.2050-084X, 2018, https://doi.org/10.7554/eLife.30015
  19. cpubi4 Is Essential for Development and Virulence in Chestnut Blight Fungus vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.01286