DOI QR코드

DOI QR Code

Propranolol, a β-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice

  • Baek, Kyunghwa (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Hwang, Hyo Rin (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Park, Hyun-Jung (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Kwon, Arang (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Qadir, Abdul S. (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Baek, Jeong-Hwa (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University)
  • Received : 2013.11.28
  • Accepted : 2014.01.02
  • Published : 2014.09.30

Abstract

We investigated the effects of high calorie and low calorie diets on skeletal integrity, and whether ${\beta}$-adrenergic blockade (BB) attenuates bone loss induced by dietary calorie alteration. Male 6-week-old C57BL/6 mice were assigned to either an ad-lib fed control diet (CON), a high calorie diet (HIGH), or a low calorie diet (LOW) group. In each diet group, mice were treated with either vehicle (VEH) or propranolol, a ${\beta}$-adrenergic antagonist. Over 12-weeks, ${\beta}$-blockade mitigated body weight and fat mass increases induced by the high calorie diet. Femoral trabecular bone mineral density and the expression levels of osteogenic marker genes in bone marrow cells were reduced in HIGHVEH and LOWVEH mice, and BB significantly attenuated this decline only in HIGH mice. In summary, the magnitude of bone loss induced by low calorie diet was greater than that caused by high calorie diet in growing mice, and ${\beta}$-blockade mitigated high calorie diet-induced bone loss.

Keywords

References

  1. Cao, J. J. (2011) Effects of obesity on bone metabolism. J. Orthop. Surg. Res. 6, 30. https://doi.org/10.1186/1749-799X-6-30
  2. Lac, G., Cavalie, H., Ebal, E. and Michaux, O. (2008) Effects of a high fat diet on bone of growing rats. Correlations between visceral fat, adiponectin and bone mass density. Lipids Health Dis. 7, 16. https://doi.org/10.1186/1476-511X-7-16
  3. Parhami, F., Tintut, Y., Beamer, W. G., Gharavi, N., Goodman, W. and Demer, L. L. (2001) Atherogenic high-fat diet reduces bone mineralization in mice. J. Bone Miner. Res. 16, 182-188. https://doi.org/10.1359/jbmr.2001.16.1.182
  4. Yaemsiri, S., Slining, M. M. and Agarwal, S. K. (2011) Perceived weight status, overweight diagnosis, and weight control among US adults: the NHANES 2003-2008 Study. Int. J. Obes. (Lond) 35, 1063-1070. https://doi.org/10.1038/ijo.2010.229
  5. Ihle, R. and Loucks, A. B. (2004) Dose-response relationships between energy availability and bone turnover in young exercising women. J. Bone Miner. Res. 19, 1231-1240. https://doi.org/10.1359/JBMR.040410
  6. Talbott, S. M., Cifuentes, M., Dunn, M. G. and Shapses, S. A. (2001) Energy restriction reduces bone density and biomechanical properties in aged female rats. J. Nutr. 131, 2382-2387.
  7. Riedt, C. S., Cifuentes, M., Stahl, T., Chowdhury, H. A., Schlussel, Y. and Shapses, S. A. (2005) Overweight postmenopausal women lose bone with moderate weight reduction and 1 g/day calcium intake. J. Bone Miner. Res. 20, 455-463.
  8. Bjurholm, A. (1991) Neuroendocrine peptides in bone. Int. Orthop. 15, 325-329.
  9. Takeda, S., Elefteriou, F., Levasseur, R., Liu, X., Zhao, L., Parker, K. L., Armstrong, D., Ducy, P. and Karsenty, G. (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305-317. https://doi.org/10.1016/S0092-8674(02)01049-8
  10. Elefteriou, F., Ahn, J. D., Takeda, S., Starbuck, M., Yang, X., Liu, X., Kondo, H., Richards, W. G., Bannon, T. W., Noda, M., Clement, K., Vaisse, C. and Karsenty, G. (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514-520. https://doi.org/10.1038/nature03398
  11. Takeuchi, T., Tsuboi, T., Arai, M. and Togari, A. (2001) Adrenergic stimulation of osteoclastogenesis mediated by expression of osteoclast differentiation factor in MC3T3-E1 osteoblast-like cells. Biochem. Pharmacol. 61, 579-586. https://doi.org/10.1016/S0006-2952(00)00591-8
  12. da Silva, A. A., do Carmo, J., Dubinion, J. and Hall, J. E. (2009) The role of the sympathetic nervous system in obesity-related hypertension. Curr. Hypertens. Rep. 11, 206-211. https://doi.org/10.1007/s11906-009-0036-3
  13. Trayhurn, P., Hoggard, N., Mercer, J. G. and Rayner, D. V. (1999) Leptin: fundamental aspects. Int. J. Obes. Relat. Metab. Disord. 23 (Suppl 1), 22-28.
  14. Zauner, C., Schneeweiss, B., Kranz, A., Madl, C., Ratheiser, K., Kramer, L., Roth, E., Schneider, B. and Lenz, K. (2000) Resting energy expenditure in short-term starvation is increased as a result of an increase in serum norepinephrine. Am. J. Clin. Nutr. 71, 1511-1515.
  15. Baek, K. and Bloomfield, S. A. (2009) Beta-adrenergic blockade and leptin replacement effectively mitigate disuse bone loss. J. Bone Miner. Res. 24, 792-799. https://doi.org/10.1359/jbmr.081241
  16. Tatsumi, S., Ito, M., Asaba, Y., Tsutsumi, K. and Ikeda, K. (2008) Life-long caloric restriction reveals biphasic and dimorphic effects on bone metabolism in rodents. Endocrinology 149, 634-641. https://doi.org/10.1210/en.2007-1089
  17. Bonnet, N., Beaupied, H., Vico, L., Dolleans, E., Laroche, N., Courteix, D. and Benhamou, C. L. (2007) Combined effects of exercise and propranolol on bone tissue in ovariectomized rats. J. Bone Miner. Res. 22, 578-588. https://doi.org/10.1359/jbmr.070117
  18. Baek, K. and Bloomfield, S. A. (2012) Blocking beta-adrenergic signaling attenuates reductions in circulating leptin, cancellous bone mass, and marrow adiposity seen with dietary energy restriction. J. Appl. Physiol. 113, 1792-1801. https://doi.org/10.1152/japplphysiol.00187.2012
  19. Banu, M. J., Orhii, P. B., Mejia, W., McCarter, R. J., Mosekilde, L., Thomsen, J. S. and Kalu, D. N. (1999) Analysis of the effects of growth hormone, voluntary exercise, and food restriction on diaphyseal bone in female F344 rats. Bone 25, 469-480. https://doi.org/10.1016/S8756-3282(99)00195-7
  20. Ionova-Martin, S. S., Wade, J. M., Tang, S., Shahnazari, M., Ager, J. W., 3rd, Lane, N. E., Yao, W., Alliston, T., Vaisse, C. and Ritchie, R. O. (2011) Changes in cortical bone response to high-fat diet from adolescence to adulthood in mice. Osteoporos Int. 22, 2283-2293. https://doi.org/10.1007/s00198-010-1432-x

Cited by

  1. Housing Temperature–Induced Stress Is Suppressing Murine Graft-versus-Host Disease through β2-Adrenergic Receptor Signaling vol.195, pp.10, 2015, https://doi.org/10.4049/jimmunol.1500700
  2. The β-Adrenergic System and Bone Mineral Remodeling vol.13, pp.3, 2015, https://doi.org/10.1007/s12018-015-9183-z
  3. Isoproterenol Increases RANKL Expression in a ATF4/NFATc1-Dependent Manner in Mouse Osteoblastic Cells vol.18, pp.10, 2017, https://doi.org/10.3390/ijms18102204
  4. Blocking β1/β2-Adrenergic Signaling Reduces Dietary Fat Absorption by Suppressing Expression of Pancreatic Lipase in High Fat-Fed Mice vol.19, pp.3, 2018, https://doi.org/10.3390/ijms19030857
  5. The Time Point-Specific Effect of Beta-Adrenergic Blockade in Attenuating High Fat Diet-Induced Obesity and Bone Loss vol.103, pp.2, 2018, https://doi.org/10.1007/s00223-018-0407-3