DOI QR코드

DOI QR Code

Channel Doping Concentration Dependent Threshold Voltage Movement of Asymmetric Double Gate MOSFET

비대칭 이중게이트 MOSFET의 도핑농도에 대한 문턱전압이동

  • Jung, Hakkee (Department of Electronic Engineering, Kunsan National University)
  • Received : 2014.06.09
  • Accepted : 2014.07.28
  • Published : 2014.09.30

Abstract

This paper has analyzed threshold voltage movement for channel doping concentration of asymmetric double gate(DG) MOSFET. The asymmetric DGMOSFET is generally fabricated with low doping channel and fully depleted under operation. Since impurity scattering is lessened, asymmetric DGMOSFET has the adventage that high speed operation is possible. The threshold voltage movement, one of short channel effects necessarily occurred in fine devices, is investigated for the change of channel doping concentration in asymmetric DGMOSFET. The analytical potential distribution of series form is derived from Possion's equation to obtain threshold voltage. The movement of threshold voltage is investigated for channel doping concentration with parameters of channel length, channel thickness, oxide thickness, and doping profiles. As a result, threshold voltage increases with increase of doping concentration, and that decreases with decrease of channel length. Threshold voltage increases with decrease of channel thickness and bottom gate voltage. Lastly threshold voltage increases with decrease of oxide thickness.

본 연구에서는 비대칭 이중게이트(double gate; DG) MOSFET의 채널 도핑농도 변화에 따른 문턱전압이동 현상에 대하여 분석하였다. 비대칭 DGMOSFET는 일반적으로 저 농도로 채널을 도핑하여 완전결핍상태로 동작하도록 제작한다. 불순물산란의 감소에 의한 고속 동작이 가능하므로 고주파소자에 응용할 수 있다는 장점이 있다. 미세소자에서 필연적으로 발생하고 있는 단채널 효과 중 문턱전압이동현상이 비대칭 DGMOSFET의 채널도핑농도의 변화에 따라 관찰하고자 한다. 문턱전압을 구하기 위하여 해석학적 전위분포를 포아송방정식으로부터 급수형태로 유도하였다. 채널길이와 두께, 산화막 두께 및 도핑분포함수의 변화 등을 파라미터로 하여 도핑농도에 따라 문턱전압의 이동현상을 관찰하였다. 결과적으로 도핑농도가 증가하면 문턱전압이 증가하였으며 채널길이가 감소하면 문턱전압이 크게 감소하였다. 또한 채널두께와 하단게이트 전압이 감소하면 문턱전압이 크게 증가하는 것을 알 수 있었다. 마지막으로 산화막 두께가 감소하면 문턱전압이 증가하는 것을 알 수 있었다.

Keywords

References

  1. G. Deng anf C. Chen, "Binary Multiplication Using Hybrid MOS and Multi-Gate Single-Electron Transistors", IEEE Trans. on VLSI systems, vol.21, no.9, pp.1573-1582, 2013. https://doi.org/10.1109/TVLSI.2012.2217993
  2. P.Zhang, E.Jacques, R.Rogel and O.Bonnaud, "P-type and N-type multi-gate polycrystalline silicon vertical thin film transistors based on low-temperature," Solid-state electronics, vol.86, no.1, pp.1-5, 2013. https://doi.org/10.1016/j.sse.2013.04.021
  3. M.C.Cheng, J.A.Smith, W.Jia and R.Coleman, "An Effective Thermal Model for FinFET Structure," IEEE Trans. Electron Devices, vol. 61, no.1, pp.202-206, 2014. https://doi.org/10.1109/TED.2013.2291512
  4. S.H.Chou, M.L.Fan and P.Su, "Investigation and Comparison of Work Function Variation for FinFET and UTB SOI Devices Using a Voronoi Approach," IEEE Trans. Electron Devices, vol. 60, no.4, pp.1485-1489, 2013. https://doi.org/10.1109/TED.2013.2248087
  5. Z.Ding, G.Hu, J.Gu, R.Liu, L.Wang and T.Tang, "An analytical model for channel potential and subthreshold swing of the symmetric and asymmetric double-gate MOSFETs," Microelectronics J., vol.42, pp.515-519, 2011. https://doi.org/10.1016/j.mejo.2010.11.002
  6. S.Jandhyala and S.Mahapatra,"Inclusion of body doping in compact models for fully-depleted common double gate MOSFET adapted to gate-oxide thickness asymmetriy", Electronics Lett., vol.48, no.13, pp.794-795, 2012. https://doi.org/10.1049/el.2012.1295
  7. D.S.Havaldar, G.Katti, N.DasGupta and A.DasGupta, "Subthreshold Current Model of FinFETs Based on Analytical Solution of 3-D Poisson's Equation," IEEE Trans. Electron Devices, vol. 53, no.4, pp.737-741, 2006. https://doi.org/10.1109/TED.2006.870874
  8. H.K.Jung and D.S.Cheong,"Analysis for Relation of Oxide Thickness and Subthreshold Swing of Asymmetric Double Gate MOSFET," Conference on Information and Communication Eng., vol.17, no.2, pp.698-701, 2013.
  9. TCAD Manual, Part.4: INSPEC, ISE Integrated Systems Engineering AG, Zurich, Switzerland, 2001, p.56. ver.7.5.
  10. H.K.Jung and S.Dimitrijev, "Analysis of Subthreshold Carrier Transport for Ultimate DGMOSFET," IEEE Trans. Electron Devices, vol. 53, no.4, pp.685-691, 2006. https://doi.org/10.1109/TED.2006.870282