DOI QR코드

DOI QR Code

Endothelium-derived Relaxing Factors of Small Resistance Arteries in Hypertension

  • Kang, Kyu-Tae (College of Pharmacy, Duksung Women's University)
  • Received : 2014.07.10
  • Accepted : 2014.09.15
  • Published : 2014.09.30

Abstract

Endothelium-derived relaxing factors (EDRFs), including nitric oxide (NO), prostacyclin ($PGI_2$), and endothelium-derived hyperpolarizing factor (EDHF), play pivotal roles in regulating vascular tone. Reduced EDRFs cause impaired endothelium-dependent vasorelaxation, or endothelial dysfunction. Impaired endothelium-dependent vasorelaxation in response to acetylcholine (ACh) is consistently observed in conduit vessels in human patients and experimental animal models of hypertension. Because small resistance arteries are known to produce more than one type of EDRF, the mechanism(s) mediating endothelium-dependent vasorelaxation in small resistance arteries may be different from that observed in conduit vessels under hypertensive conditions, where vasorelaxation is mainly dependent on NO. EDHF has been described as one of the principal mediators of endothelium-dependent vasorelaxation in small resistance arteries in normotensive animals. Furthermore, EDHF appears to become the predominant endothelium-dependent vasorelaxation pathway when the endothelial NO synthase (NOS3)/NO pathway is absent, as in NOS3-knockout mice, whereas some studies have shown that the EDHF pathway is dysfunctional in experimental models of hypertension. This article reviews our current knowledge regarding EDRFs in small arteries under normotensive and hypertensive conditions.

Keywords

References

  1. Furchgott, R.F. and Zawadzki, J.V. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288, 373-376. https://doi.org/10.1038/288373a0
  2. Vanhoutte, P.M. (1989) Endothelium and control of vascular function. State of the Art lecture. Hypertension, 13, 658-667. https://doi.org/10.1161/01.HYP.13.6.658
  3. Luscher, T.F. and Barton, M. (1997) Biology of the endothelium. Clin. Cardiol., 20, II-3-10.
  4. Palmer, R.M., Ferrige, A.G. and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 327, 524-526. https://doi.org/10.1038/327524a0
  5. Dudzinski, D.M., Igarashi, J., Greif, D. and Michel, T. (2006) The regulation and pharmacology of endothelial nitric oxide synthase. Annu. Rev. Pharmacol. Toxicol., 46, 235-276. https://doi.org/10.1146/annurev.pharmtox.44.101802.121844
  6. Oelze, M., Mollnau, H., Hoffmann, N., Warnholtz, A., Bodenschatz, M., Smolenski, A., Walter, U., Skatchkov, M., Meinertz, T. and Munzel, T. (2000) Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothelial dysfunction. Circ. Res., 87, 999-1005. https://doi.org/10.1161/01.RES.87.11.999
  7. Halbrugge, M., Friedrich, C., Eigenthaler, M., Schanzenbacher, P. and Walter, U. (1990) Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. J. Biol. Chem., 265, 3088-3093.
  8. Reinhard, M., Halbrugge, M., Scheer, U., Wiegand, C., Jockusch, B.M. and Walter, U. (1992) The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J., 11, 2063-2070.
  9. Smolenski, A., Bachmann, C., Reinhard, K., Honig-Liedl, P., Jarchau, T., Hoschuetzky, H. and Walter, U. (1998) Analysis and regulation of vasodilator-stimulated phosphoprotein serine 239 phosphorylation in vitro and in intact cells using a phosphospecific monoclonal antibody. J. Biol. Chem., 273, 20029-20035. https://doi.org/10.1074/jbc.273.32.20029
  10. Chen, L., Daum, G., Chitaley, K., Coats, S.A., Bowen-Pope, D.F., Eigenthaler, M., Thumati, N.R., Walter, U. and Clowes, A.W. (2004) Vasodilator-stimulated phosphoprotein regulates proliferation and growth inhibition by nitric oxide in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 24, 1403-1408. https://doi.org/10.1161/01.ATV.0000134705.39654.53
  11. Aszodi, A., Pfeifer, A., Ahmad, M., Glauner, M., Zhou, X.H., Ny, L., Andersson, K.E., Kehrel, B., Offermanns, S. and Fassler, R. (1999) The vasodilator-stimulated phosphoprotein (VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dispensable for smooth muscle function. EMBO J., 18, 37-48. https://doi.org/10.1093/emboj/18.1.37
  12. Fleming, I. and Busse, R. (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am. J. Physiol. Regul. Integr. Comp. Physiol., 284, R1-12. https://doi.org/10.1152/ajpregu.00323.2002
  13. Kukovetz, W.R., Holzmann, S., Wurm, A. and Poch, G. (1979) Prostacyclin increases cAMP in coronary arteries. J. Cyclic Nucleotide Res., 5, 469-476.
  14. Chang, J., Musser, J.H. and McGregor, H. (1987) Phospholipase A2: function and pharmacological regulation. Biochem. Pharmacol., 36, 2429-2436. https://doi.org/10.1016/0006-2952(87)90512-0
  15. Imig, J.D., Zou, A.P., Stec, D.E., Harder, D.R., Falck, J.R. and Roman, R.J. (1996) Formation and actions of 20-hydroxyeicosatetraenoic acid in rat renal arterioles. Am. J. Physiol., 270, R217-227.
  16. Bunting, S., Moncada, S. and Vane, J.R. (1983) The prostacyclin--thromboxane A2 balance: pathophysiological and therapeutic implications. Br. Med. Bull., 39, 271-276. https://doi.org/10.1093/oxfordjournals.bmb.a071832
  17. Vanhoutte, P.M. (1987) Vascular physiology: the end of the quest? Nature, 327, 459-460. https://doi.org/10.1038/327459a0
  18. Chen, G., Suzuki, H. and Weston, A.H. (1988) Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br. J. Pharmacol., 95, 1165-1174. https://doi.org/10.1111/j.1476-5381.1988.tb11752.x
  19. Feletou, M. and Vanhoutte, P.M. (2006) Endothelium-derived hyperpolarizing factor: where are we now? Arterioscler. Thromb. Vasc. Biol., 26, 1215-1225. https://doi.org/10.1161/01.ATV.0000217611.81085.c5
  20. Tomioka, H., Hattori, Y., Fukao, M., Sato, A., Liu, M., Sakuma, I., Kitabatake, A. and Kanno, M. (1999) Relaxation in different-sized rat blood vessels mediated by endotheliumderived hyperpolarizing factor: importance of processes mediating precontractions. J. Vasc. Res., 36, 311-320. https://doi.org/10.1159/000025659
  21. Huang, A., Sun, D., Smith, C.J., Connetta, J.A., Shesely, E.G., Koller, A. and Kaley, G. (2000) In eNOS knockout mice skeletal muscle arteriolar dilation to acetylcholine is mediated by EDHF. Am. J. Physiol. Heart Circ. Physiol., 278, H762-768. https://doi.org/10.1152/ajpheart.2000.278.3.H762
  22. Jackson, W.F. (2000) Ion channels and vascular tone. Hypertension, 35, 173-178. https://doi.org/10.1161/01.HYP.35.1.173
  23. Vanhoutte, P.M. (2004) Endothelium-dependent hyperpolarizations: the history. Pharmacol. Res., 49, 503-508. https://doi.org/10.1016/j.phrs.2003.11.015
  24. Edwards, G., Dora, K.A., Gardener, M.J., Garland, C.J. and Weston, A.H. (1998) K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature, 396, 269-272. https://doi.org/10.1038/24388
  25. Taylor, H.J., Chaytor, A.T., Evans, W.H. and Griffith, T.M. (1998) Inhibition of the gap junctional component of endothelium-dependent relaxations in rabbit iliac artery by 18-alpha glycyrrhetinic acid. Br. J. Pharmacol., 125, 1-3. https://doi.org/10.1038/sj.bjp.0702078
  26. Edwards, G., Feletou, M., Gardener, M.J., Thollon, C., Vanhoutte, P.M. and Weston, A.H. (1999) Role of gap junctions in the responses to EDHF in rat and guinea-pig small arteries. Br. J. Pharmacol., 128, 1788-1794. https://doi.org/10.1038/sj.bjp.0703009
  27. Mather, S., Dora, K.A., Sandow, S.L., Winter, P. and Garland, C.J. (2005) Rapid endothelial cell-selective loading of connexin 40 antibody blocks endothelium-derived hyperpolarizing factor dilation in rat small mesenteric arteries. Circ. Res., 97, 399-407. https://doi.org/10.1161/01.RES.0000178008.46759.d0
  28. Kansui, Y., Fujii, K., Nakamura, K., Goto, K., Oniki, H., Abe, I., Shibata, Y. and Iida, M. (2004) Angiotensin II receptor blockade corrects altered expression of gap junctions in vascular endothelial cells from hypertensive rats. Am. J. Physiol. Heart Circ. Physiol., 287, H216-224. https://doi.org/10.1152/ajpheart.00915.2003
  29. Campbell, W.B. and Harder, D.R. (1999) Endotheliumderived hyperpolarizing factors and vascular cytochrome P450 metabolites of arachidonic acid in the regulation of tone. Circ. Res., 84, 484-488. https://doi.org/10.1161/01.RES.84.4.484
  30. Fisslthaler, B., Popp, R., Kiss, L., Potente, M., Harder, D.R., Fleming, I. and Busse, R. (1999) Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature, 401, 493-497. https://doi.org/10.1038/46816
  31. Nithipatikom, K., Pratt, P.F. and Campbell, W.B. (2000) Determination of EETs using microbore liquid chromatography with fluorescence detection. Am. J. Physiol. Heart Circ. Physiol., 279, H857-862. https://doi.org/10.1152/ajpheart.2000.279.2.H857
  32. Campbell, W.B., Falck, J.R. and Gauthier, K. (2001) Role of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factor in bovine coronary arteries. Med. Sci. Monit., 7, 578-584.
  33. Pratt, P.F., Li, P., Hillard, C.J., Kurian, J. and Campbell, W.B. (2001) Endothelium-independent, ouabain-sensitive relaxation of bovine coronary arteries by EETs. Am. J. Physiol. Heart Circ. Physiol., 280, H1113-1121. https://doi.org/10.1152/ajpheart.2001.280.3.H1113
  34. Li, P.L. and Campbell, W.B. (1997) Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through a guanine nucleotide binding protein. Circ. Res., 80, 877-884. https://doi.org/10.1161/01.RES.80.6.877
  35. Imig, J.D., Inscho, E.W., Deichmann, P.C., Reddy, K.M. and Falck, J.R. (1999) Afferent arteriolar vasodilation to the sulfonimide analog of 11, 12-epoxyeicosatrienoic acid involves protein kinase A. Hypertension, 33, 408-413. https://doi.org/10.1161/01.HYP.33.1.408
  36. Earley, S., Heppner, T.J., Nelson, M.T. and Brayden, J.E. (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ. Res., 97, 1270-1279. https://doi.org/10.1161/01.RES.0000194321.60300.d6
  37. Coats, P., Johnston, F., MacDonald, J., McMurray, J.J. and Hillier, C. (2001) Endothelium-derived hyperpolarizing factor: identification and mechanisms of action in human subcutaneous resistance arteries. Circulation, 103, 1702-1708. https://doi.org/10.1161/01.CIR.103.12.1702
  38. Ardanaz, N. and Pagano, P.J. (2006) Hydrogen peroxide as a paracrine vascular mediator: regulation and signaling leading to dysfunction. Exp. Biol. Med. (Maywood), 231, 237-251. https://doi.org/10.1177/153537020623100302
  39. Shimokawa, H. and Morikawa, K. (2005) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans. J. Mol. Cell. Cardiol., 39, 725-732. https://doi.org/10.1016/j.yjmcc.2005.07.007
  40. Gao, Y.J., Hirota, S., Zhang, D.W., Janssen, L.J. and Lee, R.M. (2003) Mechanisms of hydrogen-peroxide-induced biphasic response in rat mesenteric artery. Br. J. Pharmacol., 138, 1085-1092. https://doi.org/10.1038/sj.bjp.0705147
  41. Matoba, T., Shimokawa, H., Nakashima, M., Hirakawa, Y., Mukai, Y., Hirano, K., Kanaide, H. and Takeshita, A. (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J. Clin. Invest., 106, 1521-1530. https://doi.org/10.1172/JCI10506
  42. Katusic, Z.S. (1996) Superoxide anion and endothelial regulation of arterial tone. Free Radical Biol. Med., 20, 443-448. https://doi.org/10.1016/0891-5849(96)02116-8
  43. Sullivan, J.C., Pollock, D.M. and Pollock, J.S. (2002) Altered nitric oxide synthase 3 distribution in mesenteric arteries of hypertensive rats. Hypertension, 39, 597-602. https://doi.org/10.1161/hy0202.103286
  44. Nava, E., Llinas, M.T., Gonzalez, J.D. and Salazar, F.J. (1996) Nitric oxide synthase activity in renal cortex and medulla of normotensive and spontaneously hypertensive rats. Am. J. Hypertens., 9, 1236-1239. https://doi.org/10.1016/S0895-7061(96)00325-1
  45. Hink, U., Li, H., Mollnau, H., Oelze, M., Matheis, E., Hartmann, M., Skatchkov, M., Thaiss, F., Stahl, R.A., Warnholtz, A., Meinertz, T., Griendling, K., Harrison, D.G., Forstermann, U. and Munzel, T. (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ. Res., 88, E14-22. https://doi.org/10.1161/01.RES.88.2.e14
  46. Laursen, J.B., Somers, M., Kurz, S., McCann, L., Warnholtz, A., Freeman, B.A., Tarpey, M., Fukai, T. and Harrison, D.G. (2001) Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation, 103, 1282-1288. https://doi.org/10.1161/01.CIR.103.9.1282
  47. Forstermann, U. and Munzel, T. (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation, 113, 1708-1714. https://doi.org/10.1161/CIRCULATIONAHA.105.602532
  48. Gallego, M.J., Lopez Farre, A., Riesco, A., Monton, M., Grandes, S.M., Barat, A., Hernando, L., Casado, S. and Caramelo, C.A. (1993) Blockade of endothelium-dependent responses in conscious rats by cyclosporin A: effect of L-arginine. Am. J. Physiol., 264, H708-714.
  49. Lee, M.Y., Jung, B.I., Chung, S.M., Bae, O.N., Lee, J.Y., Park, J.D., Yang, J.S., Lee, H. and Chung, J.H. (2003) Arsenicinduced dysfunction in relaxation of blood vessels. Environ. Health Perspect., 111, 513-517.
  50. Luscher, T.F. (1994) The endothelium in hypertension: bystander, target or mediator? J. Hypertens. Suppl., 12, S105-116. https://doi.org/10.1097/00004872-199407030-00014
  51. Taddei, S., Virdis, A., Mattei, P. and Salvetti, A. (1993) Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension, 21, 929-933. https://doi.org/10.1161/01.HYP.21.6.929
  52. Linder, L., Kiowski, W., Buhler, F.R. and Luscher, T.F. (1990) Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension. Circulation, 81, 1762-1767. https://doi.org/10.1161/01.CIR.81.6.1762
  53. Treasure, C.B., Klein, J.L., Vita, J.A., Manoukian, S.V., Renwick, G.H., Selwyn, A.P., Ganz, P. and Alexander, R.W. (1993) Hypertension and left ventricular hypertrophy are associated with impaired endothelium-mediated relaxation in human coronary resistance vessels. Circulation, 87, 86-93. https://doi.org/10.1161/01.CIR.87.1.86
  54. Hongo, K., Nakagomi, T., Kassell, N.F., Sasaki, T., Lehman, M., Vollmer, D.G., Tsukahara, T., Ogawa, H. and Torner, J. (1988) Effects of aging and hypertension on endotheliumdependent vascular relaxation in rat carotid artery. Stroke, 19, 892-897. https://doi.org/10.1161/01.STR.19.7.892
  55. Dohi, Y., Thiel, M.A., Buhler, F.R. and Luscher, T.F. (1990) Activation of endothelial L-arginine pathway in resistance arteries. Effect of age and hypertension. Hypertension, 16, 170-179. https://doi.org/10.1161/01.HYP.16.2.170
  56. Luscher, T.F., Vanhoutte, P.M. and Raij, L. (1987) Antihypertensive treatment normalizes decreased endothelium-dependent relaxations in rats with salt-induced hypertension. Hypertension, 9, III193-197.
  57. Takase, H., Moreau, P., Kung, C.F., Nava, E. and Luscher, T.F. (1996) Antihypertensive therapy prevents endothelial dysfunction in chronic nitric oxide deficiency. Effect of verapamil and trandolapril. Hypertension, 27, 25-31. https://doi.org/10.1161/01.HYP.27.1.25
  58. Luscher, T.F., Dohi, Y. and Tschudi, M. (1992) Endotheliumdependent regulation of resistance arteries: alterations with aging and hypertension. J. Cardiovasc. Pharmacol., 19 Suppl 5, S34-42. https://doi.org/10.1097/00005344-199206001-00006
  59. Taddei, S., Virdis, A., Mattei, P., Arzilli, F. and Salvetti, A. (1992) Endothelium-dependent forearm vasodilation is reduced in normotensive subjects with familial history of hypertension. J. Cardiovasc. Pharmacol., 20 Suppl 12, S193-195. https://doi.org/10.1097/00005344-199204002-00054
  60. Sim, M.K. and Singh, M. (1987) Decreased responsiveness of the aortae of hypertensive rats to acetylcholine, histamine and noradrenaline. Br. J. Pharmacol., 90, 147-150. https://doi.org/10.1111/j.1476-5381.1987.tb16834.x
  61. Somers, M.J., Mavromatis, K., Galis, Z.S. and Harrison, D.G. (2000) Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetatesalt. Circulation, 101, 1722-1728. https://doi.org/10.1161/01.CIR.101.14.1722
  62. Bennett, M.A., Watt, P.A. and Thurston, H. (1993) Impaired endothelium-dependent relaxation in two-kidney, one clip Goldblatt hypertension: effect of vasoconstrictor prostanoids. J. Hypertens. Suppl., 11, S134-135.
  63. Laursen, J.B., Rajagopalan, S., Galis, Z., Tarpey, M., Freeman, B.A. and Harrison, D.G. (1997) Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation, 95, 588-593. https://doi.org/10.1161/01.CIR.95.3.588
  64. White, R.M., Rivera, C.O. and Davison, C.B. (1996) Differential contribution of endothelial function to vascular reactivity in conduit and resistance arteries from deoxycorticosteronesalt hypertensive rats. Hypertension, 27, 1245-1253. https://doi.org/10.1161/01.HYP.27.6.1245
  65. Pu, Q., Touyz, R.M. and Schiffrin, E.L. (2002) Comparison of angiotensin-converting enzyme (ACE), neutral endopeptidase (NEP) and dual ACE/NEP inhibition on blood pressure and resistance arteries of deoxycorticosterone acetate-salt hypertensive rats. J. Hypertens., 20, 899-907. https://doi.org/10.1097/00004872-200205000-00025
  66. Li, J. and Bukoski, R.D. (1993) Endothelium-dependent relaxation of hypertensive resistance arteries is not impaired under all conditions. Circ. Res., 72, 290-296. https://doi.org/10.1161/01.RES.72.2.290
  67. Fujii, K., Tominaga, M., Ohmori, S., Kobayashi, K., Koga, T., Takata, Y. and Fujishima, M. (1992) Decreased endotheliumdependent hyperpolarization to acetylcholine in smooth muscle of the mesenteric artery of spontaneously hypertensive rats. Circ. Res., 70, 660-669. https://doi.org/10.1161/01.RES.70.4.660
  68. Virdis, A., Neves, M.F., Amiri, F., Viel, E., Touyz, R.M. and Schiffrin, E.L. (2002) Spironolactone improves angiotensininduced vascular changes and oxidative stress. Hypertension, 40, 504-510. https://doi.org/10.1161/01.HYP.0000034738.79310.06
  69. Wang, D., Chabrashvili, T., Borrego, L., Aslam, S. and Umans, J.G. (2006) Angiotensin II infusion alters vascular function in mouse resistance vessels: roles of O and endothelium. J. Vasc. Res., 43, 109-119. https://doi.org/10.1159/000089969
  70. Deng, L.Y., Li, J.S. and Schiffrin, E.L. (1995) Endotheliumdependent relaxation of small arteries from essential hypertensive patients: mechanisms and comparison with normotensive subjects and with responses of vessels from spontaneously hypertensive rats. Clin. Sci. (Lond), 88, 611-622. https://doi.org/10.1042/cs0880611
  71. Rizzoni, D., Porteri, E., Castellano, M., Bettoni, G., Muiesan, M.L., Muiesan, P., Giulini, S.M. and Agabiti-Rosei, E. (1996) Vascular hypertrophy and remodeling in secondary hypertension. Hypertension, 28, 785-790. https://doi.org/10.1161/01.HYP.28.5.785
  72. Cockcroft, J.R., Chowienczyk, P.J., Benjamin, N. and Ritter, J.M. (1994) Preserved endothelium-dependent vasodilatation in patients with essential hypertension. N. Engl. J. Med., 330, 1036-1040. https://doi.org/10.1056/NEJM199404143301502
  73. Bruning, T.A., Chang, P.C., Hendriks, M.G., Vermeij, P., Pfaffendorf, M. and van Zwieten, P.A. (1995) In vivo characterization of muscarinic receptor subtypes that mediate vasodilatation in patients with essential hypertension. Hypertension, 26, 70-77. https://doi.org/10.1161/01.HYP.26.1.70
  74. Thybo, N.K., Mulvany, M.J., Jastrup, B., Nielsen, H. and Aalkjaer, C. (1996) Some pharmacological and elastic characteristics of isolated subcutaneous small arteries from patients with essential hypertension. J. Hypertens., 14, 993-998.
  75. Furchgott, R.F. and Vanhoutte, P.M. (1989) Endotheliumderived relaxing and contracting factors. FASEB J., 3, 2007-2018. https://doi.org/10.1096/fasebj.3.9.2545495
  76. Garland, C.J., Plane, F., Kemp, B.K. and Cocks, T.M. (1995) Endothelium-dependent hyperpolarization: a role in the control of vascular tone. Trends Pharmacol. Sci., 16, 23-30. https://doi.org/10.1016/S0165-6147(00)88969-5
  77. Kang, K.T., Sullivan, J.C., Sasser, J.M., Imig, J.D. and Pollock, J.S. (2007) Novel nitric oxide synthase--dependent mechanism of vasorelaxation in small arteries from hypertensive rats. Hypertension, 49, 893-901. https://doi.org/10.1161/01.HYP.0000259669.40991.1e

Cited by

  1. Palmitoylethanolamide Treatment Reduces Blood Pressure in Spontaneously Hypertensive Rats: Involvement of Cytochrome P450-Derived Eicosanoids and Renin Angiotensin System vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0123602
  2. Adverse effects of glucocorticoids: coagulopathy vol.173, pp.4, 2015, https://doi.org/10.1530/EJE-15-0198
  3. Neuroendorine and Epigentic Mechanisms Subserving Autonomic Imbalance and HPA Dysfunction in the Metabolic Syndrome vol.10, pp.1662-453X, 2016, https://doi.org/10.3389/fnins.2016.00142
  4. Jujuboside B Reduces Vascular Tension by Increasing Ca2+ Influx and Activating Endothelial Nitric Oxide Synthase vol.11, pp.2, 2016, https://doi.org/10.1371/journal.pone.0149386
  5. Role of Nitric Oxide and Hydrogen Sulfide in the Vasodilator Effect of Ursolic Acid and Uvaol from Black Cherry Prunus serotina Fruits vol.21, pp.1, 2016, https://doi.org/10.3390/molecules21010078
  6. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells vol.241, pp.6, 2016, https://doi.org/10.1177/1535370215622584
  7. Mechanisms Underlying Enhanced Noradrenaline-Induced Femoral Arterial Contractions of Spontaneously Hypertensive Rats: Involvement of Endothelium-Derived Factors and Cyclooxygenase-Derived Prostanoids vol.39, pp.3, 2016, https://doi.org/10.1248/bpb.b15-00821
  8. Dorzolamide-induced relaxation of isolated rabbit ciliary arteries mediated by inhibition of extracellular calcium influx vol.60, pp.2, 2016, https://doi.org/10.1007/s10384-015-0423-z
  9. Endothelial dysfunction in renal arcuate arteries of obese Zucker rats: The roles of nitric oxide, endothelium-derived hyperpolarizing factors, and calcium-activated K+ channels vol.12, pp.8, 2017, https://doi.org/10.1371/journal.pone.0183124
  10. Beneficial Effects of Paeoniflorin Enriched Extract on Blood Pressure Variability and Target Organ Damage in Spontaneously Hypertensive Rats vol.2017, pp.1741-4288, 2017, https://doi.org/10.1155/2017/5816960
  11. Aging: Molecular Pathways and Implications on the Cardiovascular System vol.2017, pp.1942-0994, 2017, https://doi.org/10.1155/2017/7941563
  12. Assessment of Combined Therapy of Histochrome and Nebivalol as Angioprotectors on the Background of Experimental Hypertension by Magnetic Resonance Angiography pp.1613-7507, 2018, https://doi.org/10.1007/s00723-017-0960-3
  13. The F-BAR Protein NOSTRIN Dictates the Localization of the Muscarinic M3 Receptor and Regulates Cardiovascular Function vol.117, pp.5, 2015, https://doi.org/10.1161/CIRCRESAHA.115.306187
  14. Irisin Lowers Blood Pressure by Improvement of Endothelial Dysfunction via AMPK‐Akt‐eNOS‐NO Pathway in the Spontaneously Hypertensive Rat vol.5, pp.11, 2016, https://doi.org/10.1161/JAHA.116.003433
  15. Role of Thioredoxin in Age-Related Hypertension vol.20, pp.1, 2018, https://doi.org/10.1007/s11906-018-0815-9
  16. Vasodilator Activity of Compounds Isolated from Plants Used in Mexican Traditional Medicine vol.23, pp.6, 2018, https://doi.org/10.3390/molecules23061474