DOI QR코드

DOI QR Code

Methylglyoxal Induces Mitochondrial Dysfunction and Cell Death in Liver

  • 투고 : 2014.05.28
  • 심사 : 2014.06.18
  • 발행 : 2014.09.30

초록

Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the production of reactive oxygen species (ROS) and depleted glutathione (GSH) content. Pretreatment with antioxidants caused a marked decrease in methylglyoxal-induced apoptosis, indicating that oxidant species are involved in the apoptotic process. Methylglyoxal treatment induced mitochondrial permeability transition, which represents mitochondrial impairment. However, pretreatment with cyclosporin A, an inhibitor of the formation of the permeability transition pore, partially inhibited methylglyoxal-induced cell death. Furthermore, acute treatment of mice with methylglyoxal increased the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver toxicity. Collectively, our results showed that methylglyoxal increases cell death and induces liver toxicity, which results from ROS-mediated mitochondrial dysfunction and oxidative stress.

키워드

참고문헌

  1. Gaens, K.H., Stehouwer, C.D. and Schalkwijk, C.G. (2013) Advanced glycation endproducts and its receptor for advanced glycation endproducts in obesity. Curr. Opin. Lipidol., 24, 4-11 https://doi.org/10.1097/MOL.0b013e32835aea13
  2. Shinohara, M., Thornalley, P.J., Giardino, I., Beisswenger, P., Thorpe, S.R., Onorato, J. and Brownlee, M. (1998) Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Invest., 101, 1142-1147. https://doi.org/10.1172/JCI119885
  3. Rabbani, N. and Thornalley, P.J. (2011) Glyoxalase in diabetes, obesity and related disorders. Semin. Cell Dev. Biol., 22, 309-317. https://doi.org/10.1016/j.semcdb.2011.02.015
  4. Tappy, L. and Le, K.A. (2012) Does fructose consumption contribute to non-alcoholic fatty liver disease? Clin. Res. Hepatol. Gastroenterol., 36, 554-560. https://doi.org/10.1016/j.clinre.2012.06.005
  5. Cai, W., Ramdas, M., Zhu, L., Chen, X., Striker, G.E. and Vlassara, H. (2012) Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc. Natl. Acad. Sci. U.S.A., 109, 15888-15893. https://doi.org/10.1073/pnas.1205847109
  6. Beisswenger, P.J., Howell, S.K., Touchette, A.D., Lal, S. and Szwergold, B.S. (1999) Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes, 48, 198-202. https://doi.org/10.2337/diabetes.48.1.198
  7. Mukohda, M., Okada, M., Hara, Y. and Yamawaki, H. (2012) Exploring mechanisms of diabetes-related macrovascular complications: role of methylglyoxal, a metabolite of glucose on regulation of vascular contractility. J. Pharmacol. Sci., 118, 303-310. https://doi.org/10.1254/jphs.11R12CP
  8. Ramasamy, R., Yan, S.F. and Schmidt, A.M. (2011) Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann. N.Y. Acad. Sci., 1243, 88-102. https://doi.org/10.1111/j.1749-6632.2011.06320.x
  9. Brouwers, O., Niessen, P.M., Ferreira, I., Miyata, T., Scheffer, P.G., Teerlink, T., Schrauwen, P., Brownlee, M., Stehouwer, C.D. and Schalkwijk, C.G. (2011) Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J. Biol. Chem., 286, 1374-1380. https://doi.org/10.1074/jbc.M110.144097
  10. Ruggiero-Lopez, D., Lecomte, M., Moinet, G., Patereau, G., Lagarde, M. and Wiernsperger, N. (1999) Reaction of metformin with dicarbonyl compounds. possible implication in the inhibition of advanced glycation end product formation. Biochem. Pharmacol., 58, 1765-1773. https://doi.org/10.1016/S0006-2952(99)00263-4
  11. Lee, B.H., Hsu, W.H., Chang, Y.Y., Kuo, H.F., Hsu, Y.W. and Pan, T.M. (2012) Ankaflavin: a natural novel PPARn agonist upregulates Nrf2 to attenuate methylglyoxal-induced diabetes in vivo. Free Radical Biol. Med., 53, 2008-2016. https://doi.org/10.1016/j.freeradbiomed.2012.09.025
  12. Jiang, G. and Zhang, B.B. (2003) Glucagon and regulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab., 284, E671-678. https://doi.org/10.1152/ajpendo.00492.2002
  13. Marceau, P., Biron, S., Hould, F.S., Marceau, S., Simard, S., Thung, S.N. and Kral, J.G. (1999) Liver pathology and the metabolic syndrome X in severe obesity. J. Clin. Endocrinol. Metab., 84, 1513-1517. https://doi.org/10.1210/jcem.84.5.5661
  14. Pun, P.B., Logan, A., Darley-Usmar, V., Chacko, B., Johnson, M.S., Huang, G.W., Rogatti, S., Prime, T.A., Methner, C., Krieg, T., Fearnley, I.M., Larsen, L., Larsen, D.S., Menger, K.E., Collins, Y., James, A.M., Kumar, G.D., Hartley, R.C., Smith, R.A. and Murphy, M.P. (2014) A mitochondria-targeted mass spectrometry probe to detect glyoxals: implications for diabetes. Free Radical Biol. Med., 67, 437-450. https://doi.org/10.1016/j.freeradbiomed.2013.11.025
  15. Ren, J., Pulakat, L., Whaley-Connell, A. and Sowers, J.R. (2010) Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J. Mol. Med., 88, 993-1001. https://doi.org/10.1007/s00109-010-0663-9
  16. Kim, J.S., He, L. and Lemasters, J.J. (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem. Biophys. Res. Commun., 304, 463-470. https://doi.org/10.1016/S0006-291X(03)00618-1
  17. Lemasters, J.J., Nieminen, A.L., Qian, T., Trost, L.C., Elmore, S.P., Nishimura, Y., Crowe, R.A., Cascio, W.E., Bradham, C.A., Brenner, D.A. and Herman, B. (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta, 1366, 177-196. https://doi.org/10.1016/S0005-2728(98)00112-1
  18. Shin, S.M., Cho, I.J. and Kim, S.G. (2009) Resveratrol protects mitochondria against oxidative stress through AMP-activated protein kinase-mediated glycogen synthase kinase-$3{\beta}$ inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol. Pharmacol., 76, 884-895. https://doi.org/10.1124/mol.109.058479
  19. Yu, S.W., Wang, H., Poitras, M.F., Coombs, C., Bowers, W.J., Federoff, H.J., Poirier, G.G., Dawson, T.M. and Dawson, V.L. (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science, 297, 259-263. https://doi.org/10.1126/science.1072221
  20. Yu, S.W., Andrabi, S.A., Wang, H., Kim, N.S., Poirier, G.G., Dawson, T.M. and Dawson, V.L. (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc. Natl. Acad. Sci. U.S.A., 103, 18314-18319. https://doi.org/10.1073/pnas.0606528103
  21. Rolo, A.P. and Palmeira, C.M. (2006) Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol., 212, 167-178. https://doi.org/10.1016/j.taap.2006.01.003
  22. Yan, S.D., Schmidt, A.M., Anderson, G.M., Zhang, J., Brett, J., Zou, Y.S., Pinsky, D. and Stern, D. (1994) Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J. Biol. Chem., 269, 9889-9897.
  23. Meister, A. and Anderson. M.E. (1983) Glutathione. Annu. Rev. Biochem., 52, 711-760. https://doi.org/10.1146/annurev.bi.52.070183.003431
  24. Choudhary, D., Chandra, D. and Kale, R.K. (1997) Influence of methylglyoxal on antioxidant enzymes and oxidative damage. Toxicol. Lett., 93, 141-152. https://doi.org/10.1016/S0378-4274(97)00087-8
  25. Rej, R. (1978) Aspartate aminotransferase activity and isoenzyme proportions in human liver tissues. Clin. Chem., 24, 1971-1979.
  26. Cheng, A.S., Cheng, Y.H., Chiou, C.H. and Chang, T.L. (2012) Resveratrol upregulates Nrf2 Expression to attenuate methylglyoxal-induced insulin resistance in Hep G2 cells. J. Agric. Food Chem., 60, 9180-9187. https://doi.org/10.1021/jf302831d
  27. Masterjohn, C., Mah, E., Park, Y., Pei, R., Lee, J., Manautou, J.E. and Bruno, R.S. (2013) Acute glutathione depletion induces hepatic methylglyoxal accumulation by impairing its detoxification to D-lactate. Exp. Biol. Med. (Maywood), 238, 360-369. https://doi.org/10.1177/1535370213477987
  28. Li, W., Xu, H., Hu, Y., He, P., Ni, Z., Xu, H., Zhang, Z. and Dai, H. (2013) Edaravone protected human brain microvascular endothelial cells from methylglyoxal-induced injury by inhibiting AGEs/RAGE/oxidative stress. PLoS One, 8, e76025. https://doi.org/10.1371/journal.pone.0076025
  29. Fiory, F., Lombardi, A., Miele, C., Giudicelli, J., Beguinot, F. and Van Obberghen, E. (2011) Methylglyoxal impairs insulin signalling and insulin action on glucose-induced insulin secretion in the pancreatic beta cell line INS-1E. Diabetologia, 54, 2941-2952. https://doi.org/10.1007/s00125-011-2280-8
  30. Li, W., Maloney, R.E., Circu, M.L., Alexander, J.S. and Aw, T.Y. (2013) Acute carbonyl stress induces occludin glycation and brain microvascular endothelial barrier dysfunction: role for glutathione-dependent metabolism of methylglyoxal. Free Radical Biol. Med., 54, 51-61. https://doi.org/10.1016/j.freeradbiomed.2012.10.552
  31. Sorci, G., Riuzzi, F., Giambanco, I. and Donato, R. (2013) RAGE in tissue homeostasis, repair and regeneration. Biochim. Biophys. Acta, 1833, 101-109. https://doi.org/10.1016/j.bbamcr.2012.10.021
  32. Ramasamy, R., Yan, S.F. and Schmidt, A.M. (2012) The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes. Vasc. Pharmacol., 57, 160-167. https://doi.org/10.1016/j.vph.2012.06.004

피인용 문헌

  1. Neuroprotective Effect of Sulforaphane against Methylglyoxal Cytotoxicity vol.28, pp.6, 2015, https://doi.org/10.1021/acs.chemrestox.5b00067
  2. Induction of apoptosis by an ethanol extract of Poria cocos Wolf. in human leukemia U937 cells vol.34, pp.5, 2015, https://doi.org/10.3892/or.2015.4256
  3. Sestrin2: A Promising Therapeutic Target for Liver Diseases vol.38, pp.7, 2015, https://doi.org/10.1248/bpb.b15-00228
  4. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system vol.47, pp.6, 2015, https://doi.org/10.1007/s10863-015-9631-y
  5. Methylglyoxal induces cell death through endoplasmic reticulum stress-associated ROS production and mitochondrial dysfunction vol.20, pp.9, 2016, https://doi.org/10.1111/jcmm.12893
  6. Methylglyoxal Causes Cell Death in Neural Progenitor Cells and Impairs Adult Hippocampal Neurogenesis vol.29, pp.3, 2016, https://doi.org/10.1007/s12640-015-9588-y
  7. Overload in Injured Sertoli Cells Exposed to Bisphenol A vol.32, pp.3, 2017, https://doi.org/10.1002/tox.22282
  8. Hwang-Heuk-San induces apoptosis in HCT116 human colorectal cancer cells through the ROS-mediated activation of caspases and the inactivation of the PI3K/Akt signaling pathway vol.36, pp.1, 2016, https://doi.org/10.3892/or.2016.4812
  9. Thymoquinone induces apoptosis through downregulation of c-FLIP and Bcl-2 in renal carcinoma Caki cells vol.36, pp.4, 2016, https://doi.org/10.3892/or.2016.5019
  10. Non-thermal gas plasma-induced endoplasmic reticulum stress mediates apoptosis in human colon cancer cells vol.36, pp.4, 2016, https://doi.org/10.3892/or.2016.5038
  11. Methylglyoxal and methylglyoxal-modified collagen as inducers of cellular injury in gingival connective tissue cells vol.51, pp.6, 2016, https://doi.org/10.1111/jre.12365
  12. The effect of carnosine on methylglyoxal-induced oxidative stress in rats vol.123, pp.3, 2017, https://doi.org/10.1080/13813455.2017.1296468
  13. Polydatin Prevents Methylglyoxal-Induced Apoptosis through Reducing Oxidative Stress and Improving Mitochondrial Function in Human Umbilical Vein Endothelial Cells vol.2017, pp.1942-0994, 2017, https://doi.org/10.1155/2017/7180943
  14. down-regulation of p65 in endothelial cells vol.21, pp.11, 2017, https://doi.org/10.1111/jcmm.13188
  15. Evaluation of methylglyoxal toxicity in human erythrocytes, leukocytes and platelets vol.27, pp.4, 2017, https://doi.org/10.1080/15376516.2017.1285971
  16. Nuclear and Mitochondrial DNA Methylation Patterns Induced by Valproic Acid in Human Hepatocytes vol.30, pp.10, 2017, https://doi.org/10.1021/acs.chemrestox.7b00171
  17. Intracellular methylglyoxal induces oxidative damage to pancreatic beta cell line INS-1 cell through Ire1α-JNK and mitochondrial apoptotic pathway vol.51, pp.4, 2017, https://doi.org/10.1080/10715762.2017.1289376
  18. Signal and regulatory effects of methylglyoxal in eukaryotic cells (review) vol.53, pp.3, 2017, https://doi.org/10.1134/S0003683817030103
  19. Ferulic acid prevents methylglyoxal-induced protein glycation, DNA damage, and apoptosis in pancreatic β-cells vol.73, pp.1, 2017, https://doi.org/10.1007/s13105-016-0531-3
  20. Potent apoptosis-inducing activity of erypoegin K, an isoflavone isolated from Erythrina poeppigiana, against human leukemia HL-60 cells pp.1861-0293, 2017, https://doi.org/10.1007/s11418-017-1147-9
  21. Methylglyoxal in Metabolic Disorders: Facts, Myths, and Promises vol.37, pp.2, 2016, https://doi.org/10.1002/med.21410
  22. The Glyoxalase System and Methylglyoxal-Derived Carbonyl Stress in Sepsis: Glycotoxic Aspects of Sepsis Pathophysiology vol.18, pp.3, 2017, https://doi.org/10.3390/ijms18030657
  23. Antiglycative Activity and RAGE Expression in Rett Syndrome vol.8, pp.2, 2019, https://doi.org/10.3390/cells8020161