DOI QR코드

DOI QR Code

Immunomodulatory Effects of Curcuma longa L. Extract in LP-BM5 Murine Leukemia Viruses-induced Murine Acquired Immune Deficiency Syndrome

면역결핍 동물모델에서 울금 주정 추출물의 면역조절 효과

  • Kim, Ok Kyung (Department of Medical Nutrition, Kyung Hee University) ;
  • Yoo, Seon A (Department of Medical Nutrition, Kyung Hee University) ;
  • Nam, Da-Eun (Department of Medical Nutrition, Kyung Hee University) ;
  • Kim, Yongjae (Korea INSPharm Research Institute) ;
  • Kim, Eun (Korea INSPharm Research Institute) ;
  • Jun, Woojin (Department of Food and Nutrition, Chonnam National University) ;
  • Hwan, Kwontack (Department of Food and Nutrition, Nambu University) ;
  • Lee, Jeongmin (Department of Medical Nutrition, Kyung Hee University)
  • 김옥경 (경희대학교 의학영양학과) ;
  • 유선아 (경희대학교 의학영양학과) ;
  • 남다은 (경희대학교 의학영양학과) ;
  • 김용재 (한국인스팜(주) 중앙연구소) ;
  • 김은 (한국인스팜(주) 중앙연구소) ;
  • 전우진 (전남대학교 식품영양학과) ;
  • 황권택 (남부대학교 식품영양학과) ;
  • 이정민 (경희대학교 의학영양학과)
  • Received : 2014.05.20
  • Accepted : 2014.06.26
  • Published : 2014.09.30

Abstract

The immune system protects the body against harmful substances and infectious agents. Normally, the body can maintain a state of immune homeostasis. However, failure of immune homeostasis results in severe diseases when the immune system is defective. We investigated the immunomodulatory effect of Curcuma longa L. extract in LP-BM5 MuLV (murine leukemia viruses)-induced murine AIDS (acquired immune deficiency syndrome). Mice were divided into six groups: normal control, infected control (LP-BM5 MuLV infection), positive control (LP-BM5 MuLV infection+dietary supplement of red ginseng 200 mg/kg), CL50 (LP-BM5 MuLV infection+dietary supplement of Curcuma longa L. 20% alcohol extract 50 mg/kg), CL200 (LP-BM5 MuLV infection+dietary supplement of Curcuma longa L. 20% alcohol extract 200 mg/kg), and CL500 (LP-BM5 MuLV infection+dietary supplement of Curcuma longa L. 20% alcohol extract 500 mg/kg). We found that dietary supplementation with Curcuma longa L. 20% alcohol extract inhibited elevation of spleen, lymph node, and liver weights as well as reduction of T- and B-cell proliferation and natural killer cell activity induced by LP-BM5 MuLV infection. Moreover, Curcuma longa L. 20% alcohol extract inhibited Th1 (IL-2, IFN-${\gamma}$)/Th2 (IL-4, IL-10) cytokine imbalance and pro-inflammatory cytokine production. In conclusion, these data suggest that Curcuma longa L. has immunomodulatory effects in LP-BM5 MuLV-induced murine AIDS.

본 연구에서는 울금 20% 주정 추출물이 LP-BM5 MuLV에 감염된 MAIDS 모델에서 면역조절 효과를 확인하기 위해 cytokines 생산, 혈장 면역글로불린 농도, T 세포 및 B 세포의 증식능, NK 세포의 활성능을 측정하였다. 그 결과 LPBM5 MuLV 감염으로 인하여 감소된 T 세포 및 B 세포의 증식능, NK 세포의 활성능을 울금 20% 주정 추출물 식이 투여가 증가시켰으며, Th1 type cytokines(IL-2, IFN-${\gamma}$)의 생성량을 증가시키고 Th2 type cytokines(IL-4, IL-10)은 억제시킴으로써 Th1/Th2 type cytokine 발현을 조절하여 면역 항상성을 유지하는 효과를 보였다. 따라서 울금은 면역조절 효과를 가진 천연 기능성 소재로서의 가능성을 기대할 수 있다.

Keywords

References

  1. Tomasi TB Jr, Tan EM, Solomon A, Prendergast RA. 1965. Characteristics of an immune system common to certain external secretions. J Exp Med 121: 101-124. https://doi.org/10.1084/jem.121.1.101
  2. Gonzalez-Rey E, Chorny A, Delgado M. 2007. Regulation of immune tolerance by anti-inflammatory neuropeptides. Nat Rev Immunol 7: 52-63. https://doi.org/10.1038/nri1984
  3. 2013 Health functional food market trends and consumer survey. 2014. Korea Health Supplements Association. Seongnam, Korea.
  4. Piot P, Bartos M, Ghys PD, Walker N, Schwartlander B. 2001. The global impact of HIV/AIDS. Nature 19: 968-973.
  5. Jolicoeur P. 1991. Murine acquired immunodeficiency syndrome (MAIDS): an animal model to study the AIDS pathogenesis. FASEB J 5: 2398-2405.
  6. Li W, Green WR. 2006. The role of CD4 T cells in the pathogenesis of murine AIDS. J Virol 80: 5777-5789. https://doi.org/10.1128/JVI.02711-05
  7. Lee JM. 2006. Dehydroepiandrosterone sulfate inhibited immune dysfunction induced by LP-BM5 leukemia retrovirus infection through regulating Th1/Th2 type cytokine mRNA expression and oxidative stress in murine AIDS model. J Korean Soc Food Sci Nutr 35: 1329-1335. https://doi.org/10.3746/jkfn.2006.35.10.1329
  8. Iida R, Saito K, Yamada K, Basile AS, Sekikawa K, Takemura M, Fujii H, Wada H, Seishima M, Nabeshima T. 2000. Suppression of neurocognitive damage in LP-BM5-infected mice with a targeted deletion of the TNF-alpha gene. FASEB J 14: 1023-1031.
  9. Rodriguez AR, Hodara V, Murthy K, Morrow L, Sanchez M, Bienvenu AE, Murthy KK. 2014. T cell interleukin-15 surface expression in chimpanzees infected with human immunodeficiency virus. Cell Immunol 288: 24-30. https://doi.org/10.1016/j.cellimm.2014.01.009
  10. Greenspan HC, Aruoma OI, Arouma O. 1994. Could oxidative stress initiate programmed cell death in HIV infection? A role for plant derived metabolites having synergistic antioxidant activity. Chem Biol Interact 91: 187-197. https://doi.org/10.1016/0009-2797(94)90039-6
  11. Kim MS, Chun SS, Kim SH, Choi JH. 2012. Effect of tumeric (Curcuma longa) on bile acid and UDP-glucuronyltransferase activity in rats fed a high-fat and cholesterol diet. J Life Sci 22: 1064-1070. https://doi.org/10.5352/JLS.2012.22.8.1064
  12. Selvam R, Subramanian L, Gayathri R, Angayarkanni N. 1995. The anti-oxidant activity of tumeric (Curcuma longa). J Ethnopharmacol 47: 59-67. https://doi.org/10.1016/0378-8741(95)01250-H
  13. Chainani-Wu N. 2003. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 9: 161-168. https://doi.org/10.1089/107555303321223035
  14. Varalakshmi Ch, Ali AM, Pardhasaradhi BV, Srivastava RM, Singh S, Khar A. 2008. Immunomodulatory effects of curcumin: in-vivo. Int Immunopharmacol 8: 688-700. https://doi.org/10.1016/j.intimp.2008.01.008
  15. Liang B, Jiang S, Zhang Z, Inserra P, Lee J, Solkoff D, Watson RR. 2001. Anti-inflammatory effects of theophylline:modulation of immune functions during murine leukemia virus infection. Immunopharmacol Immunotoxicol 23:307-319. https://doi.org/10.1081/IPH-100107332
  16. Liang B, Wang JY, Watson RR. 1996. Murine AIDS, a key to understanding retrovirus-induced immunodeficiency. Viral Immunol 9: 225-239. https://doi.org/10.1089/vim.1996.9.225
  17. Odeleye OE, Eskelson CD, Watson RR. 1992. Changes in hepatic lipid composition after infection by LP-BM5 murine leukemia virus causing murine AIDS. Life Sci 51: 129-134. https://doi.org/10.1016/0024-3205(92)90006-B
  18. Dimitrov DS, Norwood D, Stantchev TS, Feng Y, Xiao X, Broder CC. 1999. A mechanism of resistance to HIV-1 entry: inefficient interactions of CXCR4 with CD4 and gp120 in macrophages. Virology 259: 1-6. https://doi.org/10.1006/viro.1999.9747
  19. Moir S, Malaspina A, Li Y, Chun TW, Lowe T, Adelsberger J, Baseler M, Ehler LA, Liu S, Davey RT Jr, Mican JA, Fauci AS. 2000. B cells of HIV-1-infected patients bind virions through CD21-complement interactions and transmit infectious virus to activated T cells. J Exp Med 192: 637-646. https://doi.org/10.1084/jem.192.5.637
  20. Moir S, Buckner CM, Ho J, Wang W, Chen J, Waldner AJ, Posada JG, Kardava L, O'Shea MA, Kottilil S, Chun TW, Proschan MA, Fauci AS. 2010. B cells in early and chronic HIV infection: evidence for preservation of immune function associated with early initiation of antiretroviral therapy. Blood 116: 5571-5579. https://doi.org/10.1182/blood-2010-05-285528
  21. Gougeon ML, Lecoeur H, Dulioust A, Enouf MG, Crouvoiser M, Goujard C, Debord T, Montagnier L. 1996. Programmed cell death in peripheral lymphocytes from HIV-infected persons: increased susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and with disease progression. J Immunol 156: 3509-3520.
  22. Morris L, Binley JM, Clas BA, Bonhoeffer S, Astill TP, Kost R, Hurley A, Cao Y, Markowitz M, Ho DD, Moore JP. 1998. HIV-1 antigen-specific and -nonspecific B cell responses are sensitive to combination antiretroviral therapy. J Exp Med 188: 233-245. https://doi.org/10.1084/jem.188.2.233
  23. Li X, Liu X. 2005. Effect of curcumin on immune function of mice. J Huazhong Univ Sci Technolog Med Sci 25: 137-140. https://doi.org/10.1007/BF02873559
  24. Powrie F, Coffman RL. 1993. Cytokine regulation of T-cell function: potential for therapeutic intervention. Immunol Today 14: 270-274. https://doi.org/10.1016/0167-5699(93)90044-L
  25. Meyaard L, Schuitemaker H, Miedema F. 1993. T-cell dysfunction in HIV infection: anergy due to defective antigen- presenting cell function? Immunol Today 14: 161-164. https://doi.org/10.1016/0167-5699(93)90279-T
  26. Biswas P, Poli G, Kinter AL, Justement JS, Stanley SK, Maury WJ, Bressler P, Orenstein JM, Fauci AS. 1992. Interferon gamma induces the expression of human immunodeficiency virus in persistently infected promonocytic cells (U1) and redirects the production of virions to intracytoplasmic vacuoles in phorbol myristate acetate-differentiated U1 cells. J Exp Med 176: 739-750. https://doi.org/10.1084/jem.176.3.739
  27. Zimmerli SC, Harari A, Cellerai C, Vallelian F, Bart PA, Pantaleo G. 2005. HIV-1-specific IFN-gamma/IL-2-secreting CD8 T cells support CD4-independent proliferation of HIV-1-specific CD8 T cells. Proc Natl Acad Sci USA 102:7239-7244. https://doi.org/10.1073/pnas.0502393102
  28. Fernandez-Ortega C, Dubed M, Ramos Y, Navea L, Alvarez G, Lobaina L, López L, Casillas D, Rodriguez L. 2004. Non-induced leukocyte extract reduces HIV replication and TNF secretion. Biochem Biophys Res Commun 325: 1075-1081. https://doi.org/10.1016/j.bbrc.2004.10.142
  29. Yue GG, Chan BC, Hon PM, Kennelly EJ, Yeung SK, Cassileth BR, Fung KP, Leung PC, Lau CB. 2010. Immunostimulatory activities of polysaccharide extract isolated from Curcuma longa. Int J Biol Macromol 47: 342-347. https://doi.org/10.1016/j.ijbiomac.2010.05.019
  30. Chan MM. 1995. Inhibition of tumor necrosis factor by curcumin, a phytochemical. Biochem Pharmacol 49: 1551-1556. https://doi.org/10.1016/0006-2952(95)00171-U
  31. Yoshikai Y, Nishimura H. 2000. The role of interleukin 15 in mounting an immune response against microbial infections. Microbes Infect 2: 381-389. https://doi.org/10.1016/S1286-4579(00)00329-4
  32. Peacock CD, Price P. 1999. The role of IL-12 in the control of MCMV is fundamentally different in mice with a retroviral immunodeficiency syndrome (MAIDS). Immunol Cell Biol 77: 131-138. https://doi.org/10.1046/j.1440-1711.1999.00810.x

Cited by

  1. Effects of Curcuma longa L. Extracts on Natural Killer Cells and T Cells vol.44, pp.3, 2015, https://doi.org/10.3746/jkfn.2015.44.3.307
  2. Immune modulation by curcumin: The role of interleukin-10 2017, https://doi.org/10.1080/10408398.2017.1358139
  3. L., Purple Sweet Potato, and Mixtures of the Two on Immunomodulation in C57BL/6J Mice Infected with LP-BM5 Murine Leukemia Retrovirus vol.21, pp.7, 2018, https://doi.org/10.1089/jmf.2017.4093
  4. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review vol.32, pp.5, 2018, https://doi.org/10.1002/ptr.6024
  5. Preventive Effect of the Herbal Preparation, HemoHIM, on Cisplatin-Induced Immune Suppression vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/3494806
  6. 홍도라지 추출물이 마우스 모델에서 Cyclophosphamide에 의한 면역력 저하 억제에 미치는 영향 vol.51, pp.4, 2020, https://doi.org/10.22889/kjp.2020.51.4.340