DOI QR코드

DOI QR Code

Physicochemical Properties and Antioxidant Capacities of Different Parts of Ginger (Zingiber officinale Roscoe)

생강(Zingiber officinale Roscoe) 부위별 이화학적 특성 및 항산화 활성

  • Lee, Hye-Ryun (Food Analysis Research Center, Suwon Women's University) ;
  • Lee, Jong-Hun (Food Analysis Research Center, Suwon Women's University) ;
  • Park, Cheol-Seong (Food Analysis Research Center, Suwon Women's University) ;
  • Ra, Kyung-Ran (Food Analysis Research Center, Suwon Women's University) ;
  • Ha, Jin-Sook (Food Analysis Research Center, Suwon Women's University) ;
  • Cha, Mi-Hyun (Food Analysis Research Center, Suwon Women's University) ;
  • Kim, Se-Na (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Choi, Youngmin (Functional Food & Nutrition Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Hwang, Jinbong (Department of Food Analysis, Korea Food Research Institute) ;
  • Nam, Jin-Sik (Food Analysis Research Center, Suwon Women's University)
  • 이혜련 (수원여자대학교 식품분석연구센터) ;
  • 이종헌 (수원여자대학교 식품분석연구센터) ;
  • 박철성 (수원여자대학교 식품분석연구센터) ;
  • 라경란 (수원여자대학교 식품분석연구센터) ;
  • 하진숙 (수원여자대학교 식품분석연구센터) ;
  • 차미현 (수원여자대학교 식품분석연구센터) ;
  • 김세나 (농촌진흥청 국립농업과학원 농식품자원부 기능성식품과) ;
  • 최용민 (농촌진흥청 국립농업과학원 농식품자원부 기능성식품과) ;
  • 황진봉 (한국식품연구원 식품분석센터) ;
  • 남진식 (수원여자대학교 식품분석연구센터)
  • Received : 2014.08.08
  • Accepted : 2014.09.05
  • Published : 2014.09.30

Abstract

The physicochemical characteristics and antioxidant activities of leaf, stem, and root of ginger (Zingiber officinale R.) were determined. Nutrient composition, reducing sugar, saponin, mineral, heavy metal, total phenolic and total flavonoid contents, and antioxidant activities based on DPPH radical scavenging and FRAP assay were measured. Catechins, gingerols, shogaols, and capsaicin compositions were also determined by HPLC. The contents of water, proteins, fats, carbohydrates, fiber, and ash from ginger root were 6.4, 6.8, 3.2, 65.4, 7.3, and 18.2%, respectively. Crude fiber contents of leaf and stem were 4~5 times higher than those of root (P<0.05), and reducing sugar content of stem was about 3 times higher than those of root. Crude saponin contents were in the order of stem

생강을 기능성 소재로 이용하기 위하여 생강 부위별 각종 영양성분 분석 및 용매 추출을 달리하여 항산화능 비교 분석, 유효성분으로 gingerol류, shogaol류 및 catechin류를 분석하였다. 일반성분은 생강 잎, 줄기, 뿌리 모두 탄수화물과 회분이 주된 구성성분이었으며, 생강 뿌리에 비해 잎, 줄기에서 조섬유의 함량이 4~5배 유의적으로 높은 값을 보였다(P<0.05). 그리고 환원당 함량은 뿌리에 비해 줄기에서 약 3배 정도 높았다. 조사포닌 함량은 줄기<뿌리<잎 순으로 함량이 높았으며, 특히 뿌리보다 잎에서 1.7배 높았다(P<0.05). 무기질 조성 및 함량은 생강 부위에 따라 큰 차이를 나타내었다. 줄기의 Sr, Ca, K 함량은 뿌리보다 4배 이상 높은 값을 보였으며, 잎의 Ca 함량은 뿌리보다 5배 유의적으로 높은 값을 보였다(P<0.05). Gingerols, shogaols 및 capsaicin 함량은 생강 뿌리에서 7종 성분 모두 확인되었으며, 잎과 줄기에서도 6-gingerol, 10-gingerol, 8-shogaol을 확인할 수 있었다. 특히 8-shoaol은 뿌리보다 잎에서 5배 높은 함량을 나타내었다. 지방산 함량 및 조성분석에서는 지방산 중 capric acid는 생강 뿌리에서만 검출되었으며, arachidic acid는 잎, 뿌리에서만 검출되었다. 잎은 줄기, 뿌리에 비해 linoleic acid, linolenic acid의 필수지방산 함량이 높았고, 뿌리보다 약 5배 높은 함량을 보였다. 총 페놀함량 측정 결과, 메탄올 추출물은 뿌리<잎<줄기 순으로 함량이 높았으며, 분획에서 잎은 물층에서 43.9 g/kg, 줄기는 에틸아세테이트에서 65.5 g/kg, 뿌리는 헥산에서 187.2 g/kg으로 높은 함량을 나타내었다. 그리고 총 플라보노이드 함량은 잎, 줄기의 모든 분획물은 뿌리의 분획물 함량과 비슷하거나 높은 함량을 보였다. Catechin류 함량은 메탄올 추출물에서 뿌리<잎<줄기 순으로 높았으며, 특히 줄기는 뿌리에 비해 약 30배 높은 함량을 보였다. 항산화 활성은 생강의 잎, 줄기에서도 높은 폴리페놀 함량을 보인 분획물에서 높은 항산화 활성을 보였다. 이 결과로 보아 생강은 뿌리 단독보다는 뿌리와 잎, 줄기를 모두 활용하는 것이 바람직하나 잎의 경우 식용으로 인정되어 있지 않아 이를 활용하기 위한 허가 추진 및 제도 개선이 필요하다.

Keywords

References

  1. Kim JS, Koh MS, Kim YH, Kim MK, Hong JS. 1991. Volatile flavor components of Korean ginger (Zingiber officinale Roscoe). Korean J Food Sci Technol 23: 141-149.
  2. Seo BI, Byun BH, Shin SS, Kim BH. 2003. Herbal food. Bethel Pub. Co., Daegu, Korea. p 102-104, 166-168, 190-192.
  3. Lee HM, Kim KT, Lee KH. 2012. Quality characteristics of ginger (Zingiber officinale Roscoe) as the ripening periods. J Fd Hyg Safety 27: 479-486. https://doi.org/10.13103/JFHS.2012.27.4.479
  4. Connell DW. 1970. The chemistry of the essential oil and oleoresin of ginger (Zingiber officinale Roscoe). Flav Ind 1: 677-693.
  5. Sheo HJ. 1999. The antibacterial action of garlic, onion, ginger and red pepper juice. J Korean Soc Food Sci Nutr 28: 94-99.
  6. Thomson M, Al-Qattan KK, Al-Sawan SM, Alnageeb MA, Khan I, Ali M. 2002. The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent. Prostaglandins Leukot Essent Fatty Acids 67: 475-478. https://doi.org/10.1054/plef.2002.0441
  7. Cooksley VG. 1996. Aromatherapy: a lifetime guide to healing with essential oils. Prentice Hall, Upper Saddle River, NJ, USA. p 349-350.
  8. Lee EJ, Yang SA, Choi HD, Im HG, Whang K, Lee IS. 2011. Comparison of gingerols in various fractions and the antioxidant effects of supercritical fluid extracts from ginger. Korean J Food Sci Technol 43: 469-474. https://doi.org/10.9721/KJFST.2011.43.4.469
  9. Lee YB, Kim YS, Ashmore CR. 1986. Antioxidant property in ginger rhizome and it's application to meat products. J Food Sci 51: 20-23. https://doi.org/10.1111/j.1365-2621.1986.tb10826.x
  10. Surh YJ. 1990. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 428: 305-327.
  11. Lee YK, Ahn SY. 1985. Oxidation prevention effect of gingerol. Korean J Food Sci Technol 17: 55-59.
  12. Lee SE, Lee SW, Bang JK, Yu YJ, Seong NS. 2004. Antioxidant activities of leaf, stem and root of Panax ginsen C. A. Meyer. Korean J Medicinal Crop Sci 12: 237-242.
  13. Kim GS, Hyun DY, Kim YO, Lee SE, Kwon H, Cha SW, Park CB, Kim YB. 2010. Investigation of ginsenosides in different parts of Panax ginseng cultured by hydroponics. Kor J Hort Sci Technol 28: 216-226.
  14. AOAC. 2005. Official methods of analysis. 18th ed. Association of Official Analytical Chemists, Washington, DC, USA.
  15. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31: 426-428. https://doi.org/10.1021/ac60147a030
  16. Dubois M, Gilles KA, Hamilton JK, Revers PA, Smith F. 1956. Colorimetric method for determination of sugar and related substance. Anal Chem 28: 350-352. https://doi.org/10.1021/ac60111a017
  17. Shibata M, Noguchi R, Suzuki M, Iwase H, Soeda K, Niwayama K, Kataoke E, Hamano M. 1971. Pharmacological studies on medicinal plant components. I. On the extracts of Ophiopogon and some folk medicine. Proc Hoshi Pharm 13: 66-76.
  18. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. 1996. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem 44: 37-44. https://doi.org/10.1021/jf950190a
  19. Shao W, Powell C, Clifford MN. 1995. The analysis by HPLC of green, black and Pu'er teas produced in Yunnan. J Sci Food Agric 69: 535-540. https://doi.org/10.1002/jsfa.2740690419
  20. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  21. Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma as a measure of antioxidant power, the FRAP assay. Anal Biochem 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  22. Ryu BH, Choi MJ, Chung KC, Lee SK. 2012. Effect of extrusion process on the change of components in ginseng. Korean J Food Sci Technol 44: 411-416. https://doi.org/10.9721/KJFST.2012.44.4.411
  23. Park H, Lee MK, Lee CH. 1986. Effect of nitrogen, phosphorus and potassium on ginsenoside composition of Panax ginseng root grown with nutrient solution. J Korean Agric Chem Society 29: 78-82.
  24. Kong BM, Park MJ, Min JW, Kim HB, Kim SH, Kim SY, Yang DC. 2008. Physico-chemical characteristics of white, fermented and red ginseng extracts. J Ginseng Res 32: 238-243. https://doi.org/10.5142/JGR.2008.32.3.238
  25. Kim SH. 2011. A study on the saponin contents and antioxidant activity of the ginseng and extruded ginseng by using different solvents for extraction. Korean J Food & Nutr 24: 528-537. https://doi.org/10.9799/ksfan.2011.24.4.528
  26. Liu W, Huang W, Sun W, Zhu Y, Ni J. 2010. Production of diosgenin from yellow ginger (Dioscorea zingiberensis C.H. Wright) saponins by commercial cellulase. World J Microbiol Biotechnol 26: 1171-1180. https://doi.org/10.1007/s11274-009-0285-y
  27. Lee JH, Nam KY, Kim MS, Bae HW. 1978. Relationship between the mineral nutrients up-take and the age of ginseng plant (Panax ginseng C.A. Meyer) J Korean Agric Chem Society 21: 58-62.
  28. Arnaud J, Bouillet MC, Alary J, Favier A. 1992. Zinc determination in human milk by flameless atomic absorption spectrometry after dry ashing. Food Chem 44: 213-219. https://doi.org/10.1016/0308-8146(92)90190-D
  29. Otunola GA, Oloyede OB, Oladiji AT, Afolayan AJ. 2010. Comparative analysis of the chemical composition of three spices - Allium sativum L., Zingiber officinale Rosc. and Capsicum frutescens L. commonly consumed in Nigeria. African J Biotechnol 9: 6927-6931.
  30. Lee GA, Chang YK, Park SY, Kim GA, Kim SH, Park KC, Kim YB, Cha SW, Song BH. 2012. Comparative analysis on concentration and uptake amount of mineral nutrients in different growth stages and temperatures of Panax ginseng C.A. meyer grown with hydroponic culture. Korean J Medicinal Crop Sci 20: 251-258. https://doi.org/10.7783/KJMCS.2012.20.4.251
  31. KFDA. 2012. Korean Food Standards Codex. KFDA, Seoul, Korea. p 2-1-8.
  32. Choi J. 1996. A study of heavy metal contamination on shoreline plants. MS Thesis. Kyung Hee University, Seoul, Korea. p 58-59.
  33. Choi SN, Chung NY. 2003. The study on the trace metals in potatoes and root vegetables. Korean J Soc Food Cookery Sci 19: 223-230.
  34. Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN. 2010. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 127: 515-520. https://doi.org/10.1016/j.jep.2009.10.004
  35. Kiuchi F, Iwakami S, Shibuya M, Hanaoka F, Sankawa U. 1992. Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids. Chem Pharm Bull (Tokyo) 40: 387-391. https://doi.org/10.1248/cpb.40.387
  36. Wu H, Hsieh MC, Lo CY, Liu CB, Sang S, Ho CT, Pan MH. 2010. 6-Shogaol is more effective than 6-gingerol and curcumin in inhibiting 12-O-tetradecanoylphorbol 13-acetateinduced tumor promotion in mice. Mol Nutr Food Res 54: 1296-1306. https://doi.org/10.1002/mnfr.200900409
  37. Chen CC, Kuo MC, Ho CT. 1986. High performance liquid chromatograph determination of pungent gingerol compounds of ginger (Zingiber officinale Roscoe). J Food Sci 51: 1364-1365. https://doi.org/10.1111/j.1365-2621.1986.tb13124.x
  38. Zielinski H, Kozlowska H. 2000. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J Agric Food Chem 48: 2008-2016. https://doi.org/10.1021/jf990619o
  39. Chanmugam P, Boudreau M, Boutte T, Park RS, Hebert J, Berrio L, Hwang DH. 1992. Incorporation of different types of n-3 fatty acids into tissue lipids of poultry. Poult Sci 71: 516-521. https://doi.org/10.3382/ps.0710516
  40. Kim KH, Kim HJ, Byun MW, Yook HS. 2012. Antioxidant and antimicrobial activities of ethanol extract from six vegetables containing different sulfur compounds. J Korean Soc Food Sci Nutr 41: 577-583. https://doi.org/10.3746/jkfn.2012.41.5.577
  41. Ghasemzadeh A, Jaafar HZ, Rahmat A. 2011. Identification and concentration of some flavonoid components in Malaysian young ginger (Zingiber officinale Roscoe) varieties by a high performance liquid chromatography method. Molecules 15: 6231-6243.
  42. Suganuma M, Okabe S, Sueoka N, Sueoka E, Matsuyama S, Imai K, Nakachi K, Fujiki H. 1999. Green tea and cancer chemoprevention. Mutat Res 428: 339-344. https://doi.org/10.1016/S1383-5742(99)00059-9
  43. Chung HY, Yoon SJ. 2002. Antioxidant activity of grape seed ethanol extract according to serial solvent fractionation. J Korean Soc Food Sci Nutr 31: 1092-1096. https://doi.org/10.3746/jkfn.2002.31.6.1092

Cited by

  1. Quality Characteristics of Cookies with Ginger Powder vol.31, pp.6, 2015, https://doi.org/10.9724/kfcs.2015.31.6.703
  2. Cross-talk between 10-gingerol and its anti-cancerous potential: a recent update vol.8, pp.8, 2017, https://doi.org/10.1039/C7FO00844A
  3. Changes in the Physicochemical Properties and Sensory Characteristics of Burdock (Arctium lappa) During Repeated Steaming and Drying Procedures vol.47, pp.3, 2015, https://doi.org/10.9721/KJFST.2015.47.3.336
  4. Effects of Lactobacillus-fermented ginger stem on Salmonella-infected broiler chicks vol.21, pp.2, 2016, https://doi.org/10.1007/s12257-015-0778-5
  5. Anti-inflammatory and antioxidant activity of the traditional herbal formula Gwakhyangjeonggi-san via enhancement of heme oxygenase-1 expression in RAW264.7 macrophages vol.13, pp.5, 2016, https://doi.org/10.3892/mmr.2016.5084
  6. Ma Huang Tang Suppresses the Production and Expression of Inflammatory Chemokines via Downregulating STAT1 Phosphorylation in HaCaT Keratinocytes vol.2016, 2016, https://doi.org/10.1155/2016/7831291
  7. Antioxidant Activities and Phenolic Compounds of Several Tissues of Pawpaw (Asimina triloba [L.] Dunal) Grown in Korea vol.82, pp.8, 2017, https://doi.org/10.1111/1750-3841.13806
  8. [L.] Dunal) at Different Ripening Stages vol.84, pp.1, 2018, https://doi.org/10.1111/1750-3841.14414
  9. YD-10B 인간구강암세포주에서 생강 유기용매 분획물의 항산화, 트롬빈억제 및 thrombin에 의해 처리된 암 침윤 및 전이 억제 효과 vol.26, pp.11, 2014, https://doi.org/10.5352/jls.2016.26.11.1289
  10. 추출용매에 따른 이슬송이버섯(Lentinula edodes GNA01) 추출물의 항산화 활성 vol.30, pp.1, 2017, https://doi.org/10.9799/ksfan.2017.30.1.051
  11. 기능성 배추 김치의 발효 특성과 암세포 증식저해능 vol.30, pp.5, 2017, https://doi.org/10.9799/ksfan.2017.30.5.1007
  12. Cytological Characteristics of Different Origin-Derived Calli and Adventitious Roots and Phenolic Compounds Profiling in Camellia japonica vol.27, pp.2, 2014, https://doi.org/10.11623/frj.2019.27.2.02
  13. Determination of Economic Thresholds for Rhizome Diseases of Ginger (Zingiber officinale) vol.23, pp.4, 2019, https://doi.org/10.7585/kjps.2019.23.4.251
  14. 핑거루트(Boesenbergia pandura)와 생강(Zingiber oficinale Rosecoe)의 항산화 및 항균 활성 비교 vol.33, pp.1, 2014, https://doi.org/10.9799/ksfan.2020.33.1.105
  15. HPLC-PDA and LC-MS/MS Analysis for the Simultaneous Quantification of the 14 Marker Components in Sojadodamgangki-Tang vol.10, pp.8, 2014, https://doi.org/10.3390/app10082804
  16. Optimization of Processing Condition for Antioxidant Activities from Aged Black Ginger Using Response Surface Methodology vol.54, pp.6, 2020, https://doi.org/10.14397/jals.2020.54.6.99
  17. 숙성 조건에 따른 흑생강의 이화학적 특성 및 항산화 활성 vol.52, pp.6, 2020, https://doi.org/10.9721/kjfst.2020.52.6.573
  18. Inhibitory Effects of Zingiber officinale Roscoe Roots, Stems, and Leaves on Oxidative Stress through Free Radical Scavenging Activity vol.50, pp.2, 2014, https://doi.org/10.3746/jkfn.2021.50.2.128
  19. 참당귀(Angelica gigas Nakai)잎 용매추출에 따른 생리활성 vol.34, pp.2, 2014, https://doi.org/10.9799/ksfan.2021.34.2.181
  20. Quality Characteristics and Antioxidant Activity of Yanggaeng Added with Black Ginger (Kaempferia parviflora) vol.50, pp.7, 2014, https://doi.org/10.3746/jkfn.2021.50.7.715
  21. Quality Characteristics of Raw Noodles added with Ginger Juice vol.30, pp.4, 2021, https://doi.org/10.5934/kjhe.2021.30.4.659
  22. Development and Validation of a High-Performance Liquid Chromatography Method for Quality Assessment of Oriental Medicine, Dokhwalgisaeng-Tang vol.11, pp.17, 2014, https://doi.org/10.3390/app11177829