DOI QR코드

DOI QR Code

Syllable-Type-Based Phoneme Weighting Techniques for Listening Intelligibility in Noisy Environments

소음 환경에서의 명료한 청취를 위한 음절형태 기반 음소 가중 기술

  • Received : 2014.08.14
  • Accepted : 2014.09.22
  • Published : 2014.09.30

Abstract

Intelligibility of speech transmitted to listeners can significantly be degraded in noisy environments such as in auditorium and in train station due to ambient noises. Noise-masked speech signal is hard to be recognized by listeners. Among the conventional methods to improve speech intelligibility, consonant-vowel intensity ratio (CVR) approach reinforces the powers of overall consonants. However, excessively reinforced consonant is not helpful in recognition. Furthermore, only some of consonants are improved by the CVR approach. In this paper, we propose the corrective weighting (CW) approach that reinforces the powers of consonants according to syllable-type such as consonant-vowel-consonant (CVC), consonant-vowel (CV) and vowel-consonant (VC) in Korean differently, considering the level of listeners' recognition. The proposed CW approach was evaluated by the subjective test, Comparison Category Rating (CCR) test of ITU-T P.800, showed better performance, that is, 0.18 and 0.24 higher than the unprocessed CVR approach, respectively.

Keywords

References

  1. Y. Ephraim and D. Malah. (1984). Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator. IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 32, no. 6, pp. 1109-1121. https://doi.org/10.1109/TASSP.1984.1164453
  2. 3GPP2 Document C.S0014-0 v1.0. (1999). Enhanced Variable Rate Codec (EVRC).
  3. G. A. Miller. (1963). Language and Communication, McGraw-Hill
  4. L. Hickson and D. Byrne. (1997). Consonant perception in quiet: effect of increasing the consonant-vowel ratio with compression amplification. Journal of the American Academy Audiology, vol. 8, no. 5, pp. 322-332.
  5. E. Kennedy, H. Levitt, A. C. Neuman, and M. Weiss. (1998). Consonant-vowel intensity ratios for maximizing consonant recognition by hearing-impaired listeners, Journal of the Acoustical Society of America, vol. 104, no. 4, pp. 1098-1114.
  6. C. A. Sammeth, M. F. Dorman, and C. J. Stearns. (1999). The role of consonant-vowel amplitude ratio in the recognition of voiceless stop consonants by listeners with hearing impairment, Journal of Speech Language and Hearing Research, vol. 42, no. 1, pp. 42-55. https://doi.org/10.1044/jslhr.4201.42
  7. D. A. Preves, T. W. Fortune, B. Woodruff, and J. Newton. (1991). Strategies for enhancing the consonant to vowel intensity ratio with in the ear hearing aids, Ear Hear, 12(6 supply):139s-153s. https://doi.org/10.1097/00003446-199112001-00008
  8. 신유정, 이경원. (2011). 한국어의 자모음비에 따른 인공와우 착용아동의 무의미 음절의 인지도 변화, 청능재활, 제7권, 제2호, pp. 200-205.
  9. 이소예, 이경원. (2010). 한국어의 자모음비(CVR)에 따른 무의미음절 단어인지도 변화, 청능재활, 제6권, 제1호, pp. 25-29.
  10. 주연미, 장현숙. (2009). 노인성 난청의 청력손실 정도에 따른 어음인지능력, 청능재활, 제5권, 제1호, pp. 36-41.
  11. 이주현, 장현숙, 정한진. (2005). 한국어 음소의 주파수 특성에 관한 연구, 청능재활, 제1권, 제1호, pp. 59-66.
  12. 김흥규, 강범모 (2000). 한국어 형태소 및 어휘 사용 빈도의 분석, 고려대학교 민족문화연구소.
  13. 김은옥, 임덕환. (2006). 어음 자극 난이도 및 화자 변수가 어음평가에 미치는 영향. 청능재활, 제2권, 제2호, pp. 102-106.
  14. ITU-T P.800. (1996). Methods for Subjective Determination of Transmission Quality.
  15. J. W. Shin, N. S. Kim (2007). Perceptual reinforcement of speech signal based on partial specific loudness, IEEE Signal Processing Letters, vol. 14, no. 11, pp. 887-890. https://doi.org/10.1109/LSP.2007.900222
  16. A. Varga and H. J. M. Steeneken. (1993). Assessment for automatic speech recognition, II-NOISEX-92; A database and an experiment to study the effect of additive noise on speech recognition systems, Speech Communication, vol. 12, pp. 247-251. https://doi.org/10.1016/0167-6393(93)90095-3