DOI QR코드

DOI QR Code

Diversity, Saccharification Capacity, and Toxigenicity Analyses of Fungal Isolates in Nuruk

누룩곰팡이 분리균의 다양성 및 당화능 분석과 독소생산능 조사

  • Kim, Min Sik (Division of Applied Life Science, Gyeongsang National University) ;
  • Kim, Sinil (Division of Applied Life Science, Gyeongsang National University) ;
  • Ha, Byeong-Seok (Division of Applied Life Science, Gyeongsang National University) ;
  • Park, Hye-Young (Fermented Food Science Division, NAAS, RDA) ;
  • BaeK, Seong-Yeol (Fermented Food Science Division, NAAS, RDA) ;
  • Yeo, Soo-Hwan (Fermented Food Science Division, NAAS, RDA) ;
  • Ro, Hyeon-Su (Division of Applied Life Science, Gyeongsang National University)
  • 김민식 (경상대학교 응용생명과학부) ;
  • 김신일 (경상대학교 응용생명과학부) ;
  • 하병석 (경상대학교 응용생명과학부) ;
  • 박혜영 (농촌진흥청 국립농업과학원 농식품자원부) ;
  • 백성열 (농촌진흥청 국립농업과학원 농식품자원부) ;
  • 여수환 (농촌진흥청 국립농업과학원 농식품자원부) ;
  • 노현수 (경상대학교 응용생명과학부)
  • Received : 2014.09.08
  • Accepted : 2014.09.23
  • Published : 2014.09.30

Abstract

Nuruk samples collected from various regions in Korea were investigated in terms of fungal contents and diversity. In measurement of colony forming unit (CFU) in Nuruk suspensions on DRBC agar, Nuruk samples MS4, MS8, and MS10 were among the highest fungal density, with $1,278.9{\pm}21.6$ (${\times}10^4$), $1,868.0{\pm}27.7$ (${\times}10^4$), and $775.1{\pm}19.2$ (${\times}10^4$) were among the samples showing the highest fungal density. CFU per 20 mg Nuruk, respectively. The majority of fungal components were yeasts, including Pichia anomala, P. kudriavzevii, Kluyveromyces marxianus, and Saccharomycopsis fibuligera, whereas Aspergillus oryzae and Rhizopus oryzae, the representative Nuruk fungi, were predominant only in the low fungal density Nuruks (MS2, MS5, and MS11). Saccharification capability of the fungal isolates was assessed by measurement of amylase activity in the culture broth. The highest amylase activity was found in A. niger and A. luchuensis, followed by S. fibuligera. A. oryzae and R. oryzae showed fair amylase activity but significantly lower than those of the three fungal species. R. oryzae was suggested to play an additional role in degradation of ${\beta}$-glucan in crop component of Nuruk since R. oryzae was the only fungus that showed ${\beta}$-glucanase activity among the fungal isolates. To confirm the safety of Nuruk, aflatoxigenicity of the isolated Aspergillus was estimated using the DNA markers norB-cypA, aflR, and omtA. All of the isolates turned out to be non-aflatoxigenic as evidenced by the deletion of gene markers, norB-cypA and aflR, and the absence of aflatoxin in the culture supernatants shown by TLC analysis.

다양한 경로를 통하여 수집된 누룩 11종에 들어 있는 효모와 곰팡이의 함량 및 다양성을 조사하였다. 누룩 현탁액을 DRBC 고체배지에서 배양한 후 고체배지상 곰팡이균들의 수를 콜로니형성단위(CFU)로 측정한 결과, MS4, MS8, MS10등 3종의 누룩에서 각각 $1,278.9{\pm}21.6$ (${\times}10^4$), $1,868.0{\pm}27.7$ (${\times}10^4$), $775.1{\pm}19.2$ (${\times}10^4$) CFU (20 mg 누룩당)로 가장 높은 곰팡이 밀도를 보였으며, 이들의 대부분은 Pichia anomala, P. kudriavzevii, Kluyveromyces marxianus 및 Saccharomycopsis fibuligera 등 효모가 차지하고 있었다. MS2, MS5, MS11등 3종의 누룩에서만 곰팡이인 Aspergillus oryzae, A. niger와 Rhizopus oryzae들이 우점균이었다. 각 곰팡이의 누룩에서의 역할을 알기 위하여, 곰팡이의 배양상등액을 취하여 amylase 및 ${\beta}$-glucanase 활성을 조사였다. Amylase 활성은 A. niger와 A. luchuensis 등 A. niger clade에 속하는 균이 가장 높았으며, 특이하게도 효모균인 S. fibuligera가 A. niger에 근접하는 amylase 활성을 보였다. A. oryzae와 R. oryzae는 당화능면에서 위 세가지 곰팡이에 비하여 뒤쳐지는 것으로 평가되었다. 한편 ${\beta}$-glucanase 활성은 주로 R. oryzae에서만 나타나서 R. oryzae가 전분의 당화 외에 곡류의 주성분 중 하나인 ${\beta}$-glucan의 분해하는 역할을 하는 것으로 추정되었다. 누룩의 안전성 평가를 위하여 분리된 Aspergillus 균들의 aflatoxin 생산능을 norB-cypA, aflR 및 omtA 유전자마커로 조사한 결과, 모든 A. oryzae 분리균들은 aflatoxin 생산능이 없는 균주들로 예측되었으며, 이는 배양액의 TLC 분석을 통해서 확인되었다.

Keywords

References

  1. Song SH, Lee SH, Lee HJ, Yoon SS, Park YS. Analysis of microflora profile in Korean traditional Nuruk. J Microbiol Biotechnol 2013;23:40-6. https://doi.org/10.4014/jmb.1210.10001
  2. Yang S, Lee J, Kwak J, Kim K, Seo M, Lee YW. Fungi associated with the traditional starter cultures used for rice wine in Korea. J Kor Soc Appl Biol Chem 2011;54:933-43. https://doi.org/10.3839/jksabc.2011.141
  3. Kim HR, Bai DH. Feasibility of brewing Makgeolli using Pichia anomala Y197-13, a non-Saccharomyces cerevisiae. J Microbiol Biotechnol 2012;22:1749-57. https://doi.org/10.4014/jmb.1210.10038
  4. Kim HR, Kim JH, Bai DH, Ahn BH. Microbiological characteristics of wild yeast strain Pichia anomala Y197-13 for brewing Makgeolli. Mycobiology 2013;41:139-44. https://doi.org/10.5941/MYCO.2013.41.3.139
  5. Kwon SJ, Ahn TY, Sohn JH. Analysis of microbial diversity in Makgeolli fermentation using PCR-DGGE. J life Sci 2012;22:232-8. https://doi.org/10.5352/JLS.2012.22.2.232
  6. Ha DM, Kim DC, Hong SM, Lee CW. Identification and properties of starch utilizing yeasts isolated from Nuruk. J Kor Agr Chem Soc 1989;32:408-16.
  7. Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin Microbiol Rev 2000;13:236-301. https://doi.org/10.1128/CMR.13.2.236-301.2000
  8. Battaglia E, Benoit I, van den Brink J, Wiebenga A, Coutinho PM, Henrissat B, de Vries RP. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level. BMC genomics 2011;12:38. https://doi.org/10.1186/1471-2164-12-38
  9. Norihiro T, Makoto F, Hiroki N, Norie K, Akio T, Shigezo U. Isolation of a cDNA encoding Aspergillus oryzae Taka-amylase A: evidence for multiple related genes. Gene 1989;84:319-27. https://doi.org/10.1016/0378-1119(89)90506-4
  10. Chang PK, Ehrlich KC, Hua SS. Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Int J Food Microbiol 2006;108:172-7. https://doi.org/10.1016/j.ijfoodmicro.2005.11.008
  11. Hong SB, Lee M, Kim DH, Chung SH, Shin HD, Samson RA. The proportion of non-aflatoxigenic strains of the Aspergillus flavus/oryzae complex from Meju by analyses of the aflatoxin biosynthetic genes. J Microbiol 2013;51:766-72. https://doi.org/10.1007/s12275-013-3128-3
  12. Bhatnagar D, Cary JW, Ehrlich K, Yu J, Cleveland TE. Understanding the genetics of regulation of aflatoxin production and Aspergillus flavus development. Mycopathology 2006;162:155-66. https://doi.org/10.1007/s11046-006-0050-9
  13. Bhatnagar D, Ehrlich KC, Cleveland TE. Molecular genetic analysis and regulation of aflatoxin biosynthesis. Appl Microbiol Biotechnol 2003;61:83-93. https://doi.org/10.1007/s00253-002-1199-x
  14. Ehrlich KC, Chang PK, Yu J, Cotty PJ. Aflatoxin biosynthesis cluster gene cypA is required for G aflatoxin formation. Appl Environ Microbiol 2004;70:6518-24. https://doi.org/10.1128/AEM.70.11.6518-6524.2004
  15. Wei D, Zhou L, Selvaraj JN, Zhang C, Xing F, Zhao Y, Wang Y, Liu Y. Molecular characterization of atoxigenic Aspergillus flavus isolates collected in China. J Microbiol 2014;52:559-65. https://doi.org/10.1007/s12275-014-3629-8
  16. White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols: A Guide to Methods and Applications. New York: Academic Press; 1990. p. 315-22.
  17. Martin KJ, Rygiewicz PT. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 2005;5:28. https://doi.org/10.1186/1471-2180-5-28
  18. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959;31;426-8. https://doi.org/10.1021/ac60147a030
  19. Reddy KRN, Saritha P, Reddy CS, Muralidharan K. Aflatoxin B1 producing potential of Aspergillus flavus strains isolated from stored rice grains. Afr J Biotechnol 2009;8:3303-8.
  20. King AD, Hocking AD, Pitt JI. Dichloran-rose bengal medium for enumeration and isolation of molds from foods. Appl Environ Microbiol 1979;37:959-64.
  21. Henson OE. Dichloran as an inhibitor of mold spreading in fungal plating media: effects on colony diameter and enumeration. Appl Environ Microbiol 1981;42:656-60.
  22. Dhaliwal SS, Oberoi HS, Sandhu SK, Nanda D, Kumar D, Uppal SK. Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii. Bioresour Technol 2011;102:5968-75. https://doi.org/10.1016/j.biortech.2011.02.015
  23. Oberoi HS, Babbar N, Sandhu SK, Dhaliwal SS, Kaur U, Chadha BS, Bhargav VK. Ethanol production from alkalitreated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. J Ind Microbiol Biotechnol 2012;39:557-66. https://doi.org/10.1007/s10295-011-1060-2
  24. Sandhu SK, Oberoi HS, Dhaliwal SS, Babbar N, Kaur U, Nanda D, Kumar D. Ethanol production from Kinnow mandarin (Citrus reticulata) peels via simultaneous saccharification and fermentation using crude enzyme produced by Aspergillus oryzae and the thermotolerant Pichia kudriavzevii strain. Ann Microbiol 2012;62:655-66. https://doi.org/10.1007/s13213-011-0302-x
  25. Itoh T, Yamashita I, Fukui S. Nucleotide sequence of the ${\alpha}$-amylase gene (ALP1) in the yeast Saccharomycopsis fibuligera. FEBS Lett 1987;219:339-42. https://doi.org/10.1016/0014-5793(87)80248-X
  26. Itoh T, Ohtsuki I, Yamashita I, Fukui S. Nucleotide sequence of the glucoamylase gene GLU1 in the yeast Saccharomycopsis fibuligera. J Bacteriol 1987;169:4171-6.
  27. Fonseca GG, Heinzle E, Wittmann C, Gombert AK. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 2008;79:339-54. https://doi.org/10.1007/s00253-008-1458-6
  28. Waker GM. Pichia anomala: cell physiology and biotechnology relative to other yeasts. Antonie van Leeuwenhoek 2011;99:25-34. https://doi.org/10.1007/s10482-010-9491-8
  29. Hua SS. Biocontrol of Aspergillus flavus by Pichia anomala. In Mndez-Vilas A, editor. Microbial pathogens and strategies for combating them: science, technology and education. Badajoz: Formatex Research Center; 2013. p. 1067-72.
  30. Kim HR, Kim JH, Bai DH, Ahn BH. Identification and characterization of useful fungi with ${\alpha}$-amylase activity from the Korean traditional Nuruk. Mycobiology 2011;39:278-82. https://doi.org/10.5941/MYCO.2011.39.4.278
  31. Hong SB, Lee M, Kim DH, Varga J, Frisvad JC, Perrone G, Gomi K, Yamada O, Machida M, Houbraken J, et al. Aspergillus luchuensis, an industrially important black Aspergillus in East Asia. PLoS One 2013;8:1-9.
  32. Chi Z, Chi Z, Liu G, Wang F, Ju L, Zhang T. Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol Adv 2009;27:423-31. https://doi.org/10.1016/j.biotechadv.2009.03.003
  33. Chen L, Chi ZM, Chi Z, Li M. Amylase production by Saccharomycopsis fibuligera A11 in solid-state fermentation for hydrolysis of cassava starch. Appl Biochem Biotechnol 2010;162:252-63. https://doi.org/10.1007/s12010-009-8744-3
  34. HozoVa B, Kuniak L, Moravcikova P, Gajdosova A. Determination of water-insoluble ${\beta}$-D-glucan in the whole-grain cereals and pseudocereals. Czech J Food Sci 2007;25:316-24.

Cited by

  1. Comprehensive analysis of fungal diversity and enzyme activity in nuruk, a Korean fermenting starter, for acquiring useful fungi vol.55, pp.5, 2017, https://doi.org/10.1007/s12275-017-7114-z