DOI QR코드

DOI QR Code

Development of Normalized Difference Blue-ice Index (NDBI) of Glaciers and Analysis of Its Variational Factors by using MODIS Images

MODIS 영상을 이용한 빙하의 정규청빙지수(NDBI) 개발 및 변화요인 분석

  • Han, Hyangsun (Department of Geophysics, Kangwon National University) ;
  • Ji, Younghun (Department of Geophysics, Kangwon National University) ;
  • Kim, Yeonchun (Department of Geophysics, Kangwon National University) ;
  • Lee, Hoonyol (Department of Geophysics, Kangwon National University)
  • 한향선 (강원대학교 지구물리학과) ;
  • 지영훈 (강원대학교 지구물리학과) ;
  • 김연춘 (강원대학교 지구물리학과) ;
  • 이훈열 (강원대학교 지구물리학과)
  • Received : 2014.07.11
  • Accepted : 2014.08.19
  • Published : 2014.08.31

Abstract

Blue-ice area is a glacial ice field in ice sheet, ice shelf and glaciers where snow ablation and sublimation is larger than snowfall. As the blue-ice area has large influences on the meteorite concentration mechanism and ice mass balance, it is required to quantify the concentration of blue-ice. We analyzed spectral reflectance characteristics of blue-ice, snow and cloud by using MODIS images obtained over blue-ice areas in McMurdo Dry Valleys, East Antarctica, from 2007 to 2012. We then developed Normalized Difference Blue-ice Index (NDBI) algorithm which quantifies the concentration of blue-ice. Snow and cloud have a high reflectance in visible and near-infrared (NIR) bands. Reflectance of blue-ice is high in blue band, while that lowers in the NIR band. NDBI is calculated by dividing the difference of reflectance in the blue and NIR bands by the sum of reflectances in the two bands so that NDBI = (Blue-NIR)/(Blue + NIR). NDBI calculated from the MODIS images showed that the blue-ice areas have values ranging from 0.2 to 0.5, depending on the exposure and concentration of blue-ice. It is obviously different from that of snow and cloud that has values less than 0.2 or rocks with negative values. The change of NDBI values in the blue-ice area has higher correlation with snow depth ($R^2=0.699$) than wind speed ($R^2=0.012$) or air temperature ($R^2=0.278$), all measured at a meteorological station installed in McMurdo Dry Valleys. As the snow depth increased, the NDBI value decreased, which suggests that snow depth can be estimated from NDBI values over blue-ice areas. The NDBI algorithm developed in this study will be useful for various polar research fields such as meteorite exploration, analysis of ice mass balance as well as the snow depth estimation.

빙상이나 빙하, 빙붕에서 푸른색의 얼음이 지표에 노출되어 있는 지역을 청빙지대라 한다. 이는 빙하 표면에 쌓인 눈이 바람에 의해 침식되거나 기온과 일사량에 따른 승화로 인해 대부분 제거되기 때문이다. 청빙지대는 운석이 농집되기 쉽고 빙체의 질량균형에 매우 큰 영향을 미치기 때문에, 청빙의 노출도 및 밀집도에 대한 정량적 지표의 개발이 요구되고 있다. 이 연구에서는 2007~2012년에 동남극 맥머도 드라이벨리를 촬영한 MODIS 영상을 이용하여 청빙과 눈, 구름의 분광반사특성을 분석하고, 청빙의 노출도 및 밀집도를 정량화 할 수 있는 정규청빙지수(Normalized Difference Blue-ice Index, NDBI) 알고리즘을 고안하였다. 눈과 구름은 가시광선과 근적외선 파장대역에서 매우 높은 반사율을 나타낸다. 청빙은 청색 파장대역에서 높은 반사율을 보이는 반면에, 근적외선 파장대역에서 낮은 반사율을 보인다. NDBI 알고리즘은 청색과 근적외선 파장대역에서의 반사율 차이를 두 반사율의 합으로 나누는 것으로 표현된다[NDBI = (Blue - NIR)/(Blue + NIR)]. 청빙의 NDBI는 노출도와 밀집도에 따라 0.2~0.5의 값을 가지며, 0.2 이하의 값을 가지는 눈과 구름이나 음수의 값을 나타내는 암석으로부터 명확히 구분되었다. 청빙의 NDBI가 시간에 따라 변화하는 현상은 맥머도 드라이벨리의 기상관측소에서 측정된 풍속($R^2=0.012$)이나 기온($R^2=0.278$) 보다는 적설두께와 가장 높은 상관성($R^2=0.699$)을 나타냈다. 적설두께가 증가할수록 NDBI 값은 감소하였는데, 이는 청빙지대의 NDBI 값으로부터 적설량의 추정이 가능함을 의미한다. 이 연구에서 개발된 NDBI 알고리즘은 운석탐사, 빙체의 질량균형 분석, 적설량 추정 등 다양한 극지연구 분야에서 매우 유용하게 사용될 것으로 전망된다.

Keywords

References

  1. Bintanja, R., 1999. On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas, Reviews of Geophysics, 37(3): 337-359. https://doi.org/10.1029/1999RG900007
  2. Bintanja, R., 2000. Surface heat budget of Antarctic snow and blue ice: Interpretation of spatial and temporal variability, Journal of Geophysical Research, 105(D19): 24387-24407. https://doi.org/10.1029/2000JD900356
  3. Bintanja, R., 2001. Snowdrift Sublimation in a Katabatic Wind Region of the Antarctic Ice Sheet, Journal of Applied Meteorology, 40(11): 1952-1966. https://doi.org/10.1175/1520-0450(2001)040<1952:SSIAKW>2.0.CO;2
  4. Bintanja, R. and C.H. Reijmer, 2001. Meteorological conditions over Antarctic blue-ice areas and their influence on the local surface mass balance, Journal of Glaciology, 47(156): 37-50. https://doi.org/10.3189/172756501781832557
  5. Bintanja, R. and M.R. van den Broeke, 1995. The surface energy balance of Antarctic snow and blue ice, Journal of Applied Meteorology, 34(4): 902-926. https://doi.org/10.1175/1520-0450(1995)034<0902:TSEBOA>2.0.CO;2
  6. Bintanja, R., S. Jonsson, and W.H. Knap, 1997. The annual cycle of the surface energy balance of Antarctic blue ice, Journal of Geophysical Research, 102(D2): 1867-1881. https://doi.org/10.1029/96JD01801
  7. Brown, I.C. and T.A. Scambos, 2004. Satellite monitoring of blue-ice extent near Byrd Glacier, Antarctica, Annals of Glaciology, 39(1): 223-230. https://doi.org/10.3189/172756404781813871
  8. Doran, P.T., C.P. McKay, G.D. Clow, G.L. Dana, A.G. Fountain, T. Nylen, and W.B. Lyons, 2002. Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986-2000, Journal of Geophysical Research, 107(D24): 4772. https://doi.org/10.1029/2001JD002045
  9. Fountain, A.G., T.H. Nylen, A. Monaghan, H.J. Basagic, and D. Bromwich, 2010. Snow in the McMurdo Dry Valleys, Antarctica, International Journal of Climatology, 30(5): 633-642. https://doi.org/10.1002/joc.1933
  10. Lee, J.I., 2009. 2006-2008 Korea expedition for Antarctic meteorites (KOREAMET), Journal of the Geological Society of Korea, 45(6): 621-637 (in Korean with English abstract).
  11. Liston G.E., J.-G. Winther, O. Bruland, H. Elvehoy, K. Sand, and L. Karluof, 2000. Snow and blue-ice distribution patterns on the coastal Antarctic Ice Sheet, Antarctic Science, 12(1): 69-79. https://doi.org/10.1017/s0954102000000109
  12. Orheim, O. and B. Lucchitta, 1990. Investigating climate change by digital analysis of blue ice extent on satellite images of Antarctica, Annals of Glaciology, 14(1): 211-215. https://doi.org/10.1017/S0260305500008600
  13. Scambos, T.A., M. Frezzotti, T. Haran, J. Bohlander, J.T.M. Lenaerts, M.R. van den Broeke, K. Jezek, D. Long, S. Urbini, K. Farness, T. Neumann, M. Albert, and J.-G. Winther, 2012. Extent of low-accumulation 'wind glaze' areas on the East Antarctic plateau: implications for continental ice mass balance, Journal of Glaciology, 58(210): 633-647. https://doi.org/10.3189/2012JoG11J232
  14. Spaulding, N.E., V.B. Spikes, G.S. Hamilton, P.A. Mayewski, N.W. Dunbar, R.P. Harvey, J. Schutt, and A.V. Kurbatov, 2012. Ice motion and mass balance at the Allan Hills blue-ice area, Antarctica, with implications for paleoclimate reconstructions, Journal of Glaciology, 58(208): 399-406. https://doi.org/10.3189/2012JoG11J176
  15. van den Broeke, M.R. and R. Bintanja, 1995. The interaction of katabatic winds and the formation of blue-ice areas in East Antarctica, Journal of Glaciology, 41(138): 395-407. https://doi.org/10.1017/S0022143000016269
  16. Vermote, E.F., N.Z. El Saleous, and C.O. Justice, 2002. Atmospheric correction of MODIS data in the visible to middle infrared: first results, Remote Sensing of Environment, 83(1-2): 97-111. https://doi.org/10.1016/S0034-4257(02)00089-5
  17. Vermote, E.F. and S. Kotchenova, 2008. Atmospheric correction for the monitoring of land surfaces, Journal of Geophysical Research, 113, D23S90.
  18. Warren, S.G., R.E. Brandt, and R.D. Boime, 1993. Blue ice and green ice, Antarctic Journal of the United States, 28(5): 255-256.
  19. Winther, J.-G., M.N. Jespersen, and G.E. Liston, 2001. Blue-ice areas in Antarctica derived from NOAA AVHRR satellite data, Journal of Glaciology, 47(157): 325-334. https://doi.org/10.3189/172756501781832386

Cited by

  1. NIR 관련 논문 통계 분석에 의한 NIR 원격탐사의 기술 및 활용분야 고찰 vol.33, pp.5, 2014, https://doi.org/10.7780/kjrs.2017.33.5.3.11
  2. 한국의 극지 원격탐사 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.2.1