DOI QR코드

DOI QR Code

Improvement of Power Generation of Microbial Fuel Cells using Maximum Power Point Tracking (MPPT) and Automatic Load Control Algorithm

최대전력점추적방법과 외부저항 제어 알고리즘을 이용한 미생물연료 전지의 전력생산 최대화

  • Song, Young Eun (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Kim, Jung Rae (School of Chemical and Biomolecular Engineering, Pusan National University)
  • 송영은 (부산대학교 화공생명공학부) ;
  • 김중래 (부산대학교 화공생명공학부)
  • Received : 2014.07.18
  • Accepted : 2014.08.22
  • Published : 2014.08.31

Abstract

A microbial fuel cell (MFC) and bioelectrochemical systems are novel bioprocesses which employ exoelectrogenic biofilm on electrode as a biocatalyst for electricity generation and various useful chemical production. Previous reports show that electrogenic biofilms of MFCs are time varying systems and dynamically interactive with the electrically conductive media (carbon paper as terminal electron acceptor). It has been reported that maximum power point tracking (MPPT) method can automatically control load by algorithm so that increase power generation and columbic efficiency. In this study, we developed logic based control strategy for external load resistance by using $LabVIEW^{TM}$ which increases the power production with using flat-plate MFCs and MPPT circuit board. The flat-plate MFCs inoculated with anaerobic digester sludge were stabilized with fixed external resistance from $1000{\Omega}$ to $100{\Omega}$. Automatic load control with MPPT started load from $52{\Omega}$ during 120 hours of operation. MPPT control strategy increased approximately 2.7 times of power production and power density (1.95 mW and $13.02mW/m^3$) compared to the initial values before application of MPPT (0.72 mW and $4.79mW/m^3$).

Keywords

References

  1. Cheng, S., Liu, H. and Logan, B. E. (2006) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Comm. 8: 489-494. https://doi.org/10.1016/j.elecom.2006.01.010
  2. Berk, R. S. and Canfield, J. H. (1964) Bioelectrochemical energy conversion. Appl. Microbiol. 12: 10-12.
  3. Rao, J., Richter, G., Von Sturm, F. and Weidlich, E. (1976) The performance of glucose electrodes and the characteristics of different biofuel cell constructions. Bioelectrochem. Bioenerget. 3: 139-150. https://doi.org/10.1016/0302-4598(76)85014-3
  4. Davis, J. B. and Yarbrough, H. F. (1962) Preliminary experiments on a microbial fuel cell. Science. 137: 615-616. https://doi.org/10.1126/science.137.3530.615
  5. Cohen, B. (1931) The bacterial culture as an electrical half-cell. J. Bacteriol. 21: 18-19.
  6. Potter, M. C. (1911) Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. 84: 260-276.
  7. Logan, B. E. (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Micro. 7: 375-381. https://doi.org/10.1038/nrmicro2113
  8. Rabaey, K., Lissens, G. and Verstraete, W. (2005) "Microbial fuel cells: Performances and perspectives" in Biofuels for Fuel Cells: Biomass Fermentation Towards Usage in Fuel Cells, ed. London: IWA Publishing.
  9. Dekker, A., Heijne, A. T., Saakes, M., Hamelers, H. V. M., and Buisman, C. J. N. (2009) Analysis and Improvement of a Scaled-Up and Stacked Microbial Fuel Cell. Environ. Sci. Technol. 43: 9038-9042. https://doi.org/10.1021/es901939r
  10. Fan, Y., Han, S. K., and Liu, H. (2012) Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ. Sci. 5: 8273-8280. https://doi.org/10.1039/c2ee21964f
  11. Chen, M., Zhang, F., Zhang, Y., and Zeng, R. J. (2013) Alkali production from bipolar membrane electrodialysis powered by microbial fuel cell and application for biogas upgrading. Appl. Energy. 103: 428-434. https://doi.org/10.1016/j.apenergy.2012.10.005
  12. Kim, Y. and Logan, B. E. (2011) Series Assembly of Microbial Desalination Cells Containing Stacked Electrodialysis Cells for Partial or Complete Seawater Desalination. Environ. Sci. Technol. 45: 5840-5845. https://doi.org/10.1021/es200584q
  13. Chang, I. S., Jang, J. K., Gil, G. C., Kim, M., Kim, H. J., Cho, B. W., and Kim, B. H. (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens. Bioelectron. 19: 607-613. https://doi.org/10.1016/S0956-5663(03)00272-0
  14. Kaur, A., Kim, J. R., Michie, I., Dinsdale, R. M., Guwy, A. J., and Premier, G. C. (2013) Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities. Biosen. Bioelectron. Accepted.
  15. Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., and Lovley, D. R. (2010) Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds. Mbio. 1.
  16. Rabaey, K. and Rozendal, R. A. (2010) Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8: 706-716. https://doi.org/10.1038/nrmicro2422
  17. Boghani, H. C., Kim, J. R., Dinsdale, R. M., Guwy, A. J., and Premier, G. C. (2013) Control of power sourced from a microbial fuel cell reduces its start-up time and increases bioelectrochemical activity. Bioresour. Technol. 140: 277-285. https://doi.org/10.1016/j.biortech.2013.04.087
  18. Woodward, L., Tartakovsky, B., Perrier, M., and Srinivasan, B. (2009) Maximizing power production in a stack of microbial fuel cells using multiunit optimization method. Biotechnol. Prog. 25: 676-682. https://doi.org/10.1002/btpr.115
  19. Premier, G. C., Kim, J. R., Michie, I., Dinsdale, R. M., and Guwy, A. J. (2011) Automatic control of load increases power and efficiency in a microbial fuel cell. J. Power Sources. 196: 2013-2019. https://doi.org/10.1016/j.jpowsour.2010.09.071
  20. Wang, H., Park, J. D., and Ren, Z. (2012) Active energy harvesting from microbial fuel cells at the maximum power point without using resistors. Environ. Sci. Technol. 46: 5247-5252. https://doi.org/10.1021/es300313d
  21. Dolara, A., Faranda, R., and Leva, S. (2009) Energy comparison of seven MPPT techniques for PV systems. J. Electromagnet. Anal. Appl. 1: 152-162.
  22. Safari, A. and Mekhilef, S. (2011) Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter. Ind. Electronic. IEEE Transac. 58: 1154-1161. https://doi.org/10.1109/TIE.2010.2048834