DOI QR코드

DOI QR Code

Analysis of Morphological Change of Polar Bacterium using Microfluidic Device with Temperature Gradient

온도 구배가 있는 미세유체 장치를 이용한 극지 미생물의 형태 변화 분석

  • Jeong, Seong-Geun (Department of Chemical Engineering, Chungnam National University) ;
  • Park, Aeri (Department of Chemical Engineering, Chungnam National University) ;
  • Jeong, Heon-Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Hong, Soon Gyu (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • 정성근 (충남대학교 공과대학 화학공학과) ;
  • 박애리 (충남대학교 공과대학 화학공학과) ;
  • 정헌호 (충남대학교 공과대학 화학공학과) ;
  • 홍순규 (극지연구소, 극지생명과학연구부) ;
  • 이창수 (충남대학교 공과대학 화학공학과)
  • Received : 2014.07.11
  • Accepted : 2014.08.25
  • Published : 2014.08.31

Abstract

We present microfluidic method to rapidly analyze the effect of temperature on the change of morphologies of Antarctic bacteria (Pseudoalteromonas sp., Shewanella vesiculosa, Shewanella sp., and Cellulophaga sp.). The microfluidic device is able to generate stable temperature gradient from 7 to$40^{\circ}C$ and dramatically reduce the number of experiments, experimental cost and labor, and amount of sample. Based on this approach, we found that specific bacteria transforming morphology into filament or elongated body strongly depends on cultivation temperature. Interestingly, we found that the morphologies of Pseudoalteromonas sp., Shewanella vesiculosa, Shewanella sp., and Cellulophaga sp. are elongated at below $25^{\circ}C$, above $20^{\circ}C$, above $15^{\circ}C$ and above $35^{\circ}C$, respectively. We envision the microfluidic device is a useful approach to analyze biological events with a high throughput manner.

Keywords

References

  1. Bereksi, N., F. Gavini, T. Benezech, and C. Faille (2002) Growth, morphology and surface properties of Listeria monocytogenes Scott A and LO28 under saline and acid environments. J. Appl. Microbiol. 92: 556-565. https://doi.org/10.1046/j.1365-2672.2002.01564.x
  2. Mattick, K. L., F. Jorgensen, J. D. Legan, H. M. Lappin-Scott, and T. J. Humphrey (2000) Habituation of Salmonella spp. at reduced water activity and its effect on heat tolerance. Appl. Environ. Micro-biol. 66: 4921-4925. https://doi.org/10.1128/AEM.66.11.4921-4925.2000
  3. Zaika, L. L. and J. S. Fanelli (2003) Growth kinetics and cell morphology of Listeria monocytogenes Scott A as affected by temperature, NaCl, and EDTA. J. Food Prot. 66: 1208-1215. https://doi.org/10.4315/0362-028X-66.7.1208
  4. Hazeleger, W. C., M. Dalvoorde, and R. R. Beumer (2006) Fluorescence microscopy of NaCl-stressed, elongated Salmonella and Listeria cells reveals the presence of septa in filaments. Int. J. Food Microbiol. 112: 288-290. https://doi.org/10.1016/j.ijfoodmicro.2006.04.026
  5. McKenzie, R. L., L. O. Bjorn, A. Bais, and M. Ilyasad (2003) Changes in biologically active ultraviolet radiation reaching the Earth's surface. Photochem. Photobiol. Sci. 2: 5-15. https://doi.org/10.1039/b211155c
  6. Karr, E. A., W. M. Sattley, M. R. Rice, D. O. Jung, M. T. Madigan, and L. A. Achenbach (2005) Diversity and distribution of sulfate- reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 71: 6353-6359. https://doi.org/10.1128/AEM.71.10.6353-6359.2005
  7. Deming, J. W. (2002) Psychrophiles and polar regions. Curr. Opin. Microbiol. 5: 301-309. https://doi.org/10.1016/S1369-5274(02)00329-6
  8. Kang, S. H., H. M. Joo, S. Park, W. Jung, S. S. Hong, K. W. Seo, M. S. Jeon, H. G. Choi, and H. J. Kim (2007) Cryobiological perspectives on the cold adaptation of polar organisms. Ocean Polar Res. 263-271. https://doi.org/10.4217/OPR.2007.29.3.263
  9. Thomas, D. N. and G. S. Dieckmann (2002) Antarctic Sea ice-a habitat for extremophiles. Science 295: 641-644. https://doi.org/10.1126/science.1063391
  10. Junge, K., C. Krembs, J. Deming, A. Stierle, and H. Eicken (2001) A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann. Glaciol. 33: 304-310. https://doi.org/10.3189/172756401781818275
  11. Wu, Y., M. R. Khadilkar, M. H. Al-Dahhan, and M. P. Dudukovic (1996) Comparison of upflow and downflow two-phase flow packed-bed reactors with and without fines: Experimental observations. Ind. Eng. Chem. Res. 35: 397-405. https://doi.org/10.1021/ie950318d
  12. Yu, J., B. Yi, D. Xing, F. Liu, Z. Shao, Y. Fu, and H. Zhang (2003) Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells. Phys. Chem. Chem. Phys. 5: 611-615. https://doi.org/10.1039/b209020a
  13. Velázquez, D., C. Rochera, A. Camacho, and A. Quesada (2011) Temperature effects on carbon and nitrogen metabolism in some Maritime Antarctic freshwater phototrophic communities. Polar Biol. 34: 1045-1055. https://doi.org/10.1007/s00300-011-0964-7
  14. Deming, J. W. (2002) Psychrophiles and polar regions. Curr. Opin. Microbiol. 5: 301-309. https://doi.org/10.1016/S1369-5274(02)00329-6
  15. Ross, D., M. Gaitan, and L. E. Locascio (2001) Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal. Chem. 73: 4117-4123. https://doi.org/10.1021/ac010370l
  16. Lee, Y. M., G. Kim, Y. J. Jung, C. D. Choe, J. H. Yim, H. K. Lee, and S. G. Hong (2012) Polar and Alpine Microbial Collection (PAMC): A culture collection dedicated to polar and alpine microorganisms. Polar Biol. 35: 1433-1438. https://doi.org/10.1007/s00300-012-1182-7
  17. Vandelinder, V., A. C. Ferreon, Y. Gambin, A. A. Deniz, and A. Groisman (2009) High-resolution temperature-concentration diagram of alpha-synuclein conformation obtained from a single Forster resonance energy transfer image in a microfluidic device. Anal. Chem. 81: 6929-6935. https://doi.org/10.1021/ac901008c
  18. Lowe, H. and W. Ehrfeld (1999) State-of-the-art in microreaction technology: Concepts, manufacturing and applications. Electrochim. Acta. 44: 3679-3689. https://doi.org/10.1016/S0013-4686(99)00071-7
  19. Jeong, S. G., S. H. Lee, and C. S. Lee (2013) Diagnostic paper chip for reliable quantitative detection of albumin using retention factor. KSBB J. 28: 254-259. https://doi.org/10.7841/ksbbj.2013.28.4.254
  20. Jeong, H. H., J. H. Lee, Y. M. Noh, Y. G. Kim, and C. S. Lee (2013) Generation of uniform agarose microwells for cell patterning by micromolding in capillaries. Macromol. Res. 21: 534-540. https://doi.org/10.1007/s13233-013-1048-z
  21. Shah, J. J., M. Gaitan, and J. Geist (2009) Generalized temperature measurement equations for Rhodamine B dye solution and its application to microfluidics. Anal. Chem. 81: 8260-8263. https://doi.org/10.1021/ac901644w
  22. Kim, K. P., Y. G. Kim, C. H. Choi, H. E. Kim, S. H. Lee, W. S. Chang, and C. S. Lee (2010) In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device. Lab Chip. 10: 3296-3299. https://doi.org/10.1039/c0lc00154f
  23. Park, A., H. H. Jeong, J. Lee, and C. S. Lee (2012) The inhibitory effect of phloretin on the formation of Escherichia coli O157: H7 biofilm in a microfluidic system. BioChip J. 6: 299-305. https://doi.org/10.1007/s13206-012-6313-2
  24. Jang, S. C., H. H. Jeong, and C. S. Lee (2012) Analysis of Pseudomonas aeruginosa motility in microchannels. Korean Chem. Eng. Res. 50: 743-748. https://doi.org/10.9713/kcer.2012.50.4.743
  25. Justice, S. S., C. Hung, J. A. Theriot, D. A. Fletcher, G. G. Anderson, M. J. Footer, and S. J. Hultgren (2004) Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl. Acad. Sci. USA. 101: 1333-1338. https://doi.org/10.1073/pnas.0308125100
  26. Yoon, M. Y., K. M. Lee, Y. Park, and S. S. Yoon (2011) Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration. PloS one. 6: e16105. https://doi.org/10.1371/journal.pone.0016105
  27. Justice, S. S., D. A. Hunstad, L. Cegelski, and S. J. Hultgren (2008) Morphological plasticity as a bacterial survival strategy. Nat. Rev. Micro. 6: 162-168. https://doi.org/10.1038/nrmicro1820
  28. Brooks, C. S., P. S. Hefty, S. E. Jolliff, and D. R. Akins (2003) Global analysis of Borrelia burgdorferi genes regulated by mammalian host-specific signals. Infect. Immun. 71: 3371-3383. https://doi.org/10.1128/IAI.71.6.3371-3383.2003
  29. Hahn, M. W., E. R. B. Moore, and M. G. Hofle (1999) Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate controlled in bacteria of different phyla. Appl. Environ. Microbiol. 65: 25-35.
  30. Motin, V. L., A. M. Georgescu, J. P. Fitch, P. P. Gu, D. O. Nelson, S. L. Mabery, J. B. Garnham, B. A. Sokhansanj, L. L. Ott, M. A. Coleman, J. M. Elliott, L. M. Kegelmeyer, A. J. Wyrobek, T. R. Slezak, R. R. Brubaker, and E. Garcia (2004) Temporal global changes in gene expression during temperature transition in Yersinia pestis. J. Bacteriol. 186: 6298-6305. https://doi.org/10.1128/JB.186.18.6298-6305.2004