DOI QR코드

DOI QR Code

Association between Axial Length and Anthropometric Value in Korean Children

한국 어린이의 안축장과 신체 계측치와의 관련성

  • Kim, Hyojin (Dept. of Visual Optics, Division of Health Science, Baekseok University) ;
  • Lyu, Jungmook (Dept. of Optometry, Konyang University)
  • 김효진 (백석대학교 보건학부 안경광학과) ;
  • 류정묵 (건양대학교 안경광학과)
  • Received : 2014.07.25
  • Accepted : 2014.09.18
  • Published : 2014.09.30

Abstract

Purpose: To investigate the relationship between axial length (AL) and anthropometric parameters in Korean children. Methods: This study included 40 urban school children aged 11-12 years (mean age, $11.95{\pm}0.22$ years; 45.0% girls) residing in Seoul, South Korea. AL (using partial coherence laser interferometry), corneal radius, refractive error, height (m), and weight (kg) were measured. Body mass index (BMI $[kg/m^2]=weight/[height]^2$) and degree of obesity (DO[%]=[actual weight standard weight]/standard weight) were calculated. Furthermore, the number of hours spent reading, watching television, and using a computer every day was determined using a detailed questionnaire. Results: The students had a mean spherical equivalent refraction of $1.06{\pm}0.84$ D. Weight (r=0.427, p=0.006), BMI (r=0.508, p=0.001), and DO (r=0.371, p=0.018) showed a significant positive correlation with AL. Furthermore, longer AL was significantly associated with heavier weight (p=0.041), and higher BMI (p=0.015), and higher DO quartiles (p=0.042). After adjust for age, sex, and near-work activities, multivariate linear regression models showed that weight, BMI, and DO were still significantly associated with AL. Among the near-work activities, daily reading time was significantly associated with AL. Conclusions: AL was positively related to weight as well as daily reading time in Korean urban school children.

목적: 본 연구는 한국 어린이를 대상으로 안축장과 신체 계측치와의 관련성을 조사하였다. 방법: 서울지역에서 11-12세(평균 연령: $11.95{\pm}0.22$세, 여학생: 45.0%)의 초등학생 40명을 대상으로 하였다. 부분 간섭측정법에 의한 안축장, 각막 곡률반경, 굴절이상도, 신장(m), 그리고 체중(kg)을 측정하였고, 체질량지수(BMI $[kg/m^2]=weight/[height]^2$)와 비만정도지수(DO[%]=[actual weightstandard weight]/standard weight)는 계산하였다. 근업 활동으로 1일 평균 독서시간, TV 시청시간, 그리고 컴퓨터 사용시간에 대하여 설문하였다. 결과: 전체 대상자의 평균 굴절이상도는 $1.06{\pm}0.84D$였고, 이들의 안축장과 몸무게(r=0.427, p=0.006), 체질량지수(r=0.508, p=0.001), 비만정도지수(r=0.371, p=0.018)는 유의한 양의 상관관계를 보였다. 또한 안축장은 체중(p=0.041)과 체질량지수(p=0.015)의 1사분위수, 그리고 비만정도지수가 가장 높은 그룹(p=0.042)에서 유의하게 길었다. 연령, 성별, 그리고 근업 활동을 보정한 후에 다중회귀분석에서 체중, 체질량지수 그리고 비만정도지수는 안축장과 유의한 관련성을 보였고, 특히, 근업 활동에서 1일 독서시간은 안축장과 유의한 관련성을 보였다. 결론: 한국 초등학생의 안축장은 체중과 관련이 있었다. 특히, 긴 안축장과 1일 독서시간은 유의한 관계를 보였다.

Keywords

References

  1. Norton TT, Manny R, O'Leary DJ. Myopia-global problem, global research. Optom Vis Sci. 2005;82(4):223-225. https://doi.org/10.1097/00006324-200504000-00001
  2. Seet B, Wong TY, Tan DT, Saw SM, Balakrishnan V, Lee LK, et al. Myopia in Singapore: taking a public health approach. Br J Ophthalmol. 2001;85(5):521-526. https://doi.org/10.1136/bjo.85.5.521
  3. Shimizu N, Nomura H, Ando F, Niino N, Miyake Y, Shimokata H. Refractive errors and factors associated with myopia in an adult Japanese population. JPN J Ophthalmol. 2003;47:6-12. https://doi.org/10.1016/S0021-5155(02)00620-2
  4. Lin LL, Shih YF, Hsiao CK, Chen CJ. Prevalence of myopia in Taiwanese schoolchildren: 1938 to 2000. Ann Acad Med Singapore. 2004;33:27-33.
  5. Wong TY, Forster PJ, Hee J, Ng TP, Tielsch JM, Chew SJ, et al. Prevalence and risk factors for refractive errors in Adult Chinese in Singapore. Invest Ophthalmol Vis Sci. 2000;41(9):2486-2494.
  6. Yoon KC, Mun GH, Kim SD, Kim SH, Kim CY, Park KH, et al. Prevalence of eye disease in south korea: data from the korea national health and nutrition examination survey 2008-2009. Korean J Ophthalmol. 2011;25(6):421-433. https://doi.org/10.3341/kjo.2011.25.6.421
  7. Junghans BM, Crewther SG. Prevalence of myopia among primary school children in eastern Sydney. Clin Exp Optom. 2003;86(5):339-345. https://doi.org/10.1111/j.1444-0938.2003.tb03130.x
  8. Kleinstein RN, Jones LA, Hullett S, Kwon S, Lee RJ, Friedman NE, et al. Refractive error and ethnicity in children. Arch Ophthalmol. 2003;121(8):1141-1147. https://doi.org/10.1001/archopht.121.8.1141
  9. Gwiazda J, Hyman L, Dong LM, Everett D, Norton T, Kurtz D, et al. Factors associated with high myopia after 7years of follow-up in the Correction of Myopia Evaluation Trial (COMET) Cohort. Ophthalmic Epidemiol. 2007;14(4): 230-237. https://doi.org/10.1080/01658100701486459
  10. Saw SM, Tong L, Chua WH, Chia KS, Koh D, Tan DT, et al. Incidence and progression of myopia in Singaporean school children. Invest Ophthalmol Vis Sci. 2005;46(1): 51-57. https://doi.org/10.1167/iovs.04-0565
  11. Braun CI, Freidlin V, Sperduto RD, Milton RC, Strahlman ER. The progression of myopia in school age children: data from the Columbia Medical Plan. Ophthalmic Epidemiol. 1996;3(1):13-21. https://doi.org/10.3109/09286589609071597
  12. Jensen H. Myopia in teenagers: An eight-year follow-up study in myopia progression and risk factors. Acta Ophthalmol Scand. 1995;73(5):389-393.
  13. Liang CL, Yen E, Su JY, Liu C, Chang TY, Park N, et al. Impact of family history of high myopia on level and onset of myopia. Invest Ophthalmol Vis Sci. 2004;45(10): 3446-3452. https://doi.org/10.1167/iovs.03-1058
  14. William J. Benjamin. Borish's clinical refraction. Second edition. Melbourne; Butterworth Heinemann. 2006;17-18.
  15. Saw SM, Katz J, Schein OD, Chew SJ, Chan TK. Epidemiology of myopia. Epidemiol Rev. 1996;18(2):175-187. https://doi.org/10.1093/oxfordjournals.epirev.a017924
  16. Saw SM, Hong RZ, Zhang MZ, Fu ZF, Ye M, Tan D, et al. Near-work activity and myopia in rural and urban schoolchildren in China. J Pediatr Ophthalmol Strabismus. 2001;38:149-155.
  17. Saw SM, Chun WH, Hong CY, Wu HM, Chan WY, Chia KS, et al. Nearwork in early-onset myopia. Invest Ophthalmol Vis Sci. 2002;43(2):332-339.
  18. Codner E, Unanue N, Gaete X, Barrera A, Mook-Kanamori D, Bazaes R, et al. Age of pubertal events in Chilean school age girls and its relationship with socioeconomic status and body mass index. Rev Med Chil. 2004;132(7): 801-808.
  19. Saw SM, Chua WH, Hong CY, Wu HM, Chia KS, Stone RA et al. Height and its relationship to refraction and biometry parameters in Singapore Chinese children. Invest Ophthalmol Vis Sci. 2002;43(5):1408-1413.
  20. Ahn YM, Sohn M, Choi SH. Comparison in weight, height, degree of obesity and body mass index among different methods for body shape classification in school-age children. J Korean Acad Nurs. 2010;40(6):775-784. https://doi.org/10.4040/jkan.2010.40.6.775
  21. Moon JS, Lee SY, Nam JM, Choi JM, Choe BK, Seo JW et al. 2007 Korean national growth charts: review of developmental process and an outlook. Kor J Pediatrics. 2008;51(1):1-25. https://doi.org/10.3345/kjp.2008.51.1.1
  22. Wu PC, Tsai CL, Hu CH, Yang YH. Effects of outdoor activities on myopia among rural school children in Taiwan. Ophthalmic Epidemiology. 2010;17(5):338-342. https://doi.org/10.3109/09286586.2010.508347
  23. Vitale S, Sperduto RD, Ferris FL 3rd. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004. Arch Ophthalmol. 2009;127(12):1632-1639. https://doi.org/10.1001/archophthalmol.2009.303
  24. Dirani M, Chan YH, Gazzard G, Hornbeak DM, Leo SW, Selvaraj P, et al. Prevalence of refractive error in Singaporean Chinese children: the strabismus, amblyopia, and refractive error in young Singaporean Children (STARS) study. Invest Ophthalmol Vis Sci. 2010;51(3):1348-1355. https://doi.org/10.1167/iovs.09-3587
  25. Liang YB, Wong TY, Sun LP, Tao QS, Wang JJ, Yang XH, et al. Refractive errors in a rural Chinese adult population the Handan eye study. Ophthalmology. 2009;116(11): 2119-2127. https://doi.org/10.1016/j.ophtha.2009.04.040
  26. Atchison DA, Jones CE, Schmid KL, Pritchard N, Pope JM, Strugnell WE, et al. Eye shape in emmetropia and myopia. Invest Ophthalmol Vis Sci. 2004;45(10):3380-3386. https://doi.org/10.1167/iovs.04-0292
  27. Sorsby A, Benjamin B, Sheridan M, Stone J, Leary GA. Refraction and its components during the growth of the eye from the age of three. Memo Med Res Counc. 1961; 301:1-67.
  28. Larsen JS. The sagittal growth of the eye. IV. ultrasonic measurement of the axial length of the eye from birth to puberty. Acta Ophthalmol (Copenh). 1971;49(6):873-886.
  29. Larsen JS. The sagittal growth of the eye. III: ultrasonic measurement of the posterior segment (axial length of the vitreous) from birth to puberty. Acta Ophthalmol (Copenh). 1971;49(3):441-453.
  30. Teikare JM. Myopia and stature. Acta Ophthalmol (Copenh). 1987;65(6):673-676.
  31. Teasdale TW, Goldschmidt E. Myopia and its relationship to education, intelligence and height: preliminary results from an ongoing study of Danish draftees. Acta Ophthalmol Suppl. 1988;185:41-43.
  32. Wong TY, Foster PJ, Johnson GJ, Klein BE, Seah SK. The relationship between ocular dimensions and refraction with adults stature: the Tanjong Pagar Surgey. Invest Ophthalmol Vis Sci. 2001;41(6):1237-1242.
  33. Gawron VJ. Differences among myopes, emmetropes, and hyperopes. Am J Optom Physiol Opt. 1981;58(9):753-760. https://doi.org/10.1097/00006324-198109000-00010
  34. Parssinen O, Era P, Leskinen AL. Some physiological and psychological characteristics of myopic and non-myopia young men. Acta Ophthalmol Suppl. 1985;173:85-87.
  35. Attebo K, Ivers RQ, Mitchell P. Refractive errors in an older population: The Blue Mountains Eye study. Ophthalmology. 1999;106(6):1066-1072. https://doi.org/10.1016/S0161-6420(99)90251-8
  36. Lin LL, Shih YF, Hsiao CK, Chen CJ, Lee LA, Hung PT. Epidemiologic study of the prevalence and severity of myopia among schoolchildren in Taiwan in 2000. J Formos Med Assoc. 2001;100(10):684-691.
  37. Saw SM, Chia SE, Chew SJ. Relation between work and myopia in Singapore women. Optom Vis Sci. 1999;76(6): 393-396. https://doi.org/10.1097/00006324-199906000-00019
  38. Mutti DO, Mitchell GL, Moeschberger ML, Jones LA, Zadnik K.l. Parental myopia, near work, school, achievement, and children's refractive error. Invest Ophthalmol Vis Sci. 2002;43(12):3633-3640.
  39. Guggenheim JA, Pong-Wong R, Haley CS, Gazzard G, Saw SM. Correlations in refractive errors between siblings in the Singapore Cohort Study of Risk factors for Myopia. Br J Ophthalmol. 2007;91(6):781-784. https://doi.org/10.1136/bjo.2006.107441
  40. Kim HJ, Leem HS, Sung HK, Lee SY. Degree of myopia according to lifestyle behavior in an upper grade of elementary school. Korean J Vis Sci. 2011;13(4):261-267.
  41. Doo HY, Sim SH, Choi SM. A study of myopia progression status for a diverse school group in Jeonbuk province. Korean J Vis Sci. 2008;10(3):189-195.
  42. Wu HM, Gupta A, Newland HS, Selva D, Aung T, Casson RJ. Association between stature, ocular biometry and refraction in an adult population in rural Myanmar: the Meiktila eye study. Clin Experiment Ophthalmol. 2007;35(9):834-839. https://doi.org/10.1111/j.1442-9071.2007.01638.x
  43. Goldschmidt E. The importance of heredity and environment in the etiology of low myopia. Acta Ophthalmol. 1981;59(5):759-762. https://doi.org/10.1111/j.1755-3768.1981.tb08743.x
  44. Saw SM, Chua WH, Wu HM, Yap E, Chia KS, Stone RA. Myopia: gene-environment interaction. Ann Acad Med Singapore. 2000;29(3):290-297.
  45. Wallman J, Winawer J. Homeostasis of eye growth and the question of myopia. Neuron. 2004;43(4):447-468. https://doi.org/10.1016/j.neuron.2004.08.008
  46. Wallman J. Myopia and the control of eye growth. West Sussex; Ciba Found Symp. 1990;155:1-4.
  47. Morgan IG. The biological basis of myopic refractive error. Clin Exp Optom. 2003;86(5):276-288. https://doi.org/10.1111/j.1444-0938.2003.tb03123.x