DOI QR코드

DOI QR Code

Distribution of Glutamate Receptors in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum)

한국관박쥐 망막에서 글루타메이트 수용체의 분포 양상

  • Kwon, Oh-Ju (Dept. of Optometry, Busan Institute of Science and Technology) ;
  • Jeon, Chang-Jin (Dept. of Biology, Kyungpook National University)
  • 권오주 (부산과학기술대학교 보건웰빙학부 안경광학과) ;
  • 전창진 (경북대학교 생명과학부 생물학과)
  • Received : 2014.08.01
  • Accepted : 2014.09.18
  • Published : 2014.09.30

Abstract

Purpose: The objective of this study was analyzing the distribution of the excitatory neurotransmitter glutamate receptor to investigate the function in the retina of the greater horseshoe bat. Methods: After retinal tissues of adult greater horseshoe bat were cut into $40{\mu}m$ vertical sections, standard immuno-cytochemical techniques was applied for analysis. Immunofluorescence images were obtained using the Bio-Rad MRC 1024 laser scanning confocal microscope. Results: AMPA (GluR1-4), Kainate (GluR5-7, KA1-2) and NMDA (1, 2A, 2B) mainly distributed in the inner plexiform layer and outer plexiform layer. KA1 receptors have existed not only plexiform layer but also ganglion cell layer. Conclusions: The greater horseshoe bat has same neuron and neurotransmitter to mammalian retina. These findings suggest that bat has a functional retina for visual analysis.

목적: 한국관박쥐 망막의 기능을 알아보기 위해서 흥분성 신경전달물질인 글루타메이트 수용체의 분포도를 분석하였다. 방법: 성체 한국관 박쥐의 망막을 $40{\mu}m$ 수직 절편 한 후 표준면역세포화학법을 이용하였다. 면역형광이미지는 Bio-Rad MRC 1024 공초점 현미경을 사용하여 얻었다. 결과: AMPA (GluR1-4), Kainate (GluR5-7, KA1-2), NMDA (1, 2A, 2B)는 내망상층과 외망상층에 주로 분포되어 있었다. KA1은 신경절세포층에도 많은 수의 수용체가 존재하였다. 결론: 한국관박쥐는 포유류망막에 있는 신경세포와 신경전달물질을 동일하게 가지고 있었다. 한국관박쥐도 기능적 망막을 가지고 있음을 제시한다.

Keywords

References

  1. 'bat' doopedia dictionary.
  2. Winter Y, Lpez J, von Helversen O. Ultraviolet vision in a bat. Nature. 2003;425:612-614. https://doi.org/10.1038/nature01971
  3. Jones G, Rayner JNV. Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae). Behav Ecol Sociobiol. 1989;25:183-191. https://doi.org/10.1007/BF00302917
  4. Ransome RD. The distribution of the Greater horse-shoe bat, Rhinolophus ferrumequinum, during hibernation, in relation to environmental factors. J Zool. 1968;154(1):77-112.
  5. Ransome RD, Hutson AM. Action plan for the conservation of the greater horseshoe bat in Europe (Rhinolophus ferrumequinum). Nature and Environment. 2000;109:7-52.
  6. Kim TJ, Jeon YK, Lee JY, Lee ES, Jeon CJ. The photoreceptor populations in the retina of the greater horseshoe bat Rhinolophus ferrumequinum. Mol Cells. 2008;26(4): 373-379.
  7. Jeon YK, Kim TJ, Lee JY, Choi JS, Jeon CJ. AII amacrine cells in the inner nuclear layer of bat retina: identification by parvalbumin immunoreactivity. Neuroreport. 2007;18(11):1095-1099. https://doi.org/10.1097/WNR.0b013e3281e72afe
  8. Jeon YK, Kim TJ, Lee ES, Joo YR, Jeon CJ. Distribution of parvalbumin -immunoreactive retinal ganglion cells in the greater horseshoe bat, Rhinolophus ferrumequinum. Journal of Life Science. 2007;17(8):1068-1074. https://doi.org/10.5352/JLS.2007.17.8.1068
  9. Massey SC, Maguire G. The role of glutamate in retinal circuitry. In: Wheal H, Thomson A., Excitatory Amino Acids and Synaptic Transmission. Academic Press. 1995;201-221.
  10. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci. 1994;17:31-108. https://doi.org/10.1146/annurev.ne.17.030194.000335
  11. Cohen ED, Miller RF. Quinoxalines block the mechanism of directional selectivity in ganglion cells of the rabbit retina. Proc Natl Acad Sci. U.S.A. 1995; 92:1127-1131. https://doi.org/10.1073/pnas.92.4.1127
  12. Jensen RJ. Responses of directionally selective retinal ganglion cells to activation of AMPA glutamate receptors. Vis Neurosci. 1999;16:205-219.
  13. Michaelis EK. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol. 1998;54: 369-415. https://doi.org/10.1016/S0301-0082(97)00055-5
  14. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev. 1999; 51:7-61.
  15. Brandsttter JH, Koulen P, Wssle H. Selective synaptic distribution of kainate receptor subunits in the two plexiform layers of the rat retina. J Neurosci. 1997;17:9298-9307. https://doi.org/10.1523/JNEUROSCI.17-23-09298.1997
  16. Qin P, Pourcho RG. Immunocytochemical localization of kainateselective gluta-mate receptor subunits GluR5, GluR6, and GluR7 in the cat retina. Brain Res. 2001;890:211-221. https://doi.org/10.1016/S0006-8993(00)03162-0
  17. Marc RE. Kainate activation of horizontal, bipolar, amacrine, and ganglion cells in the rabbit retina. J Comp Neurol. 1999;407:65-76. https://doi.org/10.1002/(SICI)1096-9861(19990428)407:1<65::AID-CNE5>3.0.CO;2-1
  18. Furukawa H. Structure and function of glutamate receptor amino terminal domains. J Physiol. 2012;590:63-72. https://doi.org/10.1113/jphysiol.2011.213850
  19. Stephenson FA. Structure and trafficking of NMDA and GABAA receptors. Biochem Soc Trans. 2006;34:877-881. https://doi.org/10.1042/BST0340877
  20. Stephenson FA. Subunit characterization of NMDA receptors. Curr Drug Targets. 2001;2:233-239. https://doi.org/10.2174/1389450013348461
  21. Paoletti P. Molecular basis of NMDA receptor functional diversity. Eur J Neurosci. 2011;33:1351-1365. https://doi.org/10.1111/j.1460-9568.2011.07628.x
  22. Thoreson WB, Witkovsky P. Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res. 1999; 18:765-810. https://doi.org/10.1016/S1350-9462(98)00031-7
  23. Jeong SA, Kwon OJ, Lee JY, Kim TJ, Jeon CJ. Synaptic pattern of AMPA receptor subtypes upon direction-selective retinal ganglion cells. Neuroscience Research. 2006; 56:427-434. https://doi.org/10.1016/j.neures.2006.08.011
  24. Kwon OJ, Kim MS, Kim TJ, Jeon CJ. Identification of synaptic pattern of kainate glutamate receptor subtypes on direction-selective retinal ganglion cells. Neuroscience Research. 2007;58:255-264. https://doi.org/10.1016/j.neures.2007.03.009
  25. Lee JG, Kwon OJ, Jeon CJ. Synaptic pattern of NMDA R1 upon the direction-selective retinal ganglion cells in developing mouse retina. J Korean Ophthalmic Opt Soc. 2013; 18(4):533-540. https://doi.org/10.14479/jkoos.2013.18.4.533
  26. Jeon YK, Joo YR, Ye EA, Kim MS, Jeon CJ. Histochemocal analysis of the cone cells in the retina of the greater horseshoe bat. J Korean Ophthalmic Opt Soc. 2013;18(2): 187-191. https://doi.org/10.14479/jkoos.2013.18.2.187
  27. Wang D, Oakley T, Mower J, Shimmin LC, Yim S, Honeycutt RL. Molecular evolution of bat color vision genes. Mol Biol Evol. 2004;21(2):295-302.
  28. Winter Y, Lopez J, von Halversen O. Ultraviolet vision in a bat. Nature. 2003;425:612-614. https://doi.org/10.1038/nature01971
  29. Dacheu RF, Raviola E. The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J Neurosci. 1986;6(2):331-345. https://doi.org/10.1523/JNEUROSCI.06-02-00331.1986
  30. Michael K, Daniel S, Lisa F, Silke H, Heinz W. Localization of NMDA receptor subunits and mapping NMDA drive within the mammalian retina. Visual Neuroscience. 2004;21:587-597. https://doi.org/10.1017/S0952523804214080

Cited by

  1. Localization of the Major Retinal Neurotransmitters and Receptors and Müller Glia in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) vol.20, pp.3, 2015, https://doi.org/10.14479/jkoos.2015.20.3.391