DOI QR코드

DOI QR Code

한국관박쥐 망막에서 글루타메이트 수용체의 분포 양상

Distribution of Glutamate Receptors in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum)

  • 권오주 (부산과학기술대학교 보건웰빙학부 안경광학과) ;
  • 전창진 (경북대학교 생명과학부 생물학과)
  • Kwon, Oh-Ju (Dept. of Optometry, Busan Institute of Science and Technology) ;
  • Jeon, Chang-Jin (Dept. of Biology, Kyungpook National University)
  • 투고 : 2014.08.01
  • 심사 : 2014.09.18
  • 발행 : 2014.09.30

초록

목적: 한국관박쥐 망막의 기능을 알아보기 위해서 흥분성 신경전달물질인 글루타메이트 수용체의 분포도를 분석하였다. 방법: 성체 한국관 박쥐의 망막을 $40{\mu}m$ 수직 절편 한 후 표준면역세포화학법을 이용하였다. 면역형광이미지는 Bio-Rad MRC 1024 공초점 현미경을 사용하여 얻었다. 결과: AMPA (GluR1-4), Kainate (GluR5-7, KA1-2), NMDA (1, 2A, 2B)는 내망상층과 외망상층에 주로 분포되어 있었다. KA1은 신경절세포층에도 많은 수의 수용체가 존재하였다. 결론: 한국관박쥐는 포유류망막에 있는 신경세포와 신경전달물질을 동일하게 가지고 있었다. 한국관박쥐도 기능적 망막을 가지고 있음을 제시한다.

Purpose: The objective of this study was analyzing the distribution of the excitatory neurotransmitter glutamate receptor to investigate the function in the retina of the greater horseshoe bat. Methods: After retinal tissues of adult greater horseshoe bat were cut into $40{\mu}m$ vertical sections, standard immuno-cytochemical techniques was applied for analysis. Immunofluorescence images were obtained using the Bio-Rad MRC 1024 laser scanning confocal microscope. Results: AMPA (GluR1-4), Kainate (GluR5-7, KA1-2) and NMDA (1, 2A, 2B) mainly distributed in the inner plexiform layer and outer plexiform layer. KA1 receptors have existed not only plexiform layer but also ganglion cell layer. Conclusions: The greater horseshoe bat has same neuron and neurotransmitter to mammalian retina. These findings suggest that bat has a functional retina for visual analysis.

키워드

참고문헌

  1. 'bat' doopedia dictionary.
  2. Winter Y, Lpez J, von Helversen O. Ultraviolet vision in a bat. Nature. 2003;425:612-614. https://doi.org/10.1038/nature01971
  3. Jones G, Rayner JNV. Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae). Behav Ecol Sociobiol. 1989;25:183-191. https://doi.org/10.1007/BF00302917
  4. Ransome RD. The distribution of the Greater horse-shoe bat, Rhinolophus ferrumequinum, during hibernation, in relation to environmental factors. J Zool. 1968;154(1):77-112.
  5. Ransome RD, Hutson AM. Action plan for the conservation of the greater horseshoe bat in Europe (Rhinolophus ferrumequinum). Nature and Environment. 2000;109:7-52.
  6. Kim TJ, Jeon YK, Lee JY, Lee ES, Jeon CJ. The photoreceptor populations in the retina of the greater horseshoe bat Rhinolophus ferrumequinum. Mol Cells. 2008;26(4): 373-379.
  7. Jeon YK, Kim TJ, Lee JY, Choi JS, Jeon CJ. AII amacrine cells in the inner nuclear layer of bat retina: identification by parvalbumin immunoreactivity. Neuroreport. 2007;18(11):1095-1099. https://doi.org/10.1097/WNR.0b013e3281e72afe
  8. Jeon YK, Kim TJ, Lee ES, Joo YR, Jeon CJ. Distribution of parvalbumin -immunoreactive retinal ganglion cells in the greater horseshoe bat, Rhinolophus ferrumequinum. Journal of Life Science. 2007;17(8):1068-1074. https://doi.org/10.5352/JLS.2007.17.8.1068
  9. Massey SC, Maguire G. The role of glutamate in retinal circuitry. In: Wheal H, Thomson A., Excitatory Amino Acids and Synaptic Transmission. Academic Press. 1995;201-221.
  10. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci. 1994;17:31-108. https://doi.org/10.1146/annurev.ne.17.030194.000335
  11. Cohen ED, Miller RF. Quinoxalines block the mechanism of directional selectivity in ganglion cells of the rabbit retina. Proc Natl Acad Sci. U.S.A. 1995; 92:1127-1131. https://doi.org/10.1073/pnas.92.4.1127
  12. Jensen RJ. Responses of directionally selective retinal ganglion cells to activation of AMPA glutamate receptors. Vis Neurosci. 1999;16:205-219.
  13. Michaelis EK. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol. 1998;54: 369-415. https://doi.org/10.1016/S0301-0082(97)00055-5
  14. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev. 1999; 51:7-61.
  15. Brandsttter JH, Koulen P, Wssle H. Selective synaptic distribution of kainate receptor subunits in the two plexiform layers of the rat retina. J Neurosci. 1997;17:9298-9307. https://doi.org/10.1523/JNEUROSCI.17-23-09298.1997
  16. Qin P, Pourcho RG. Immunocytochemical localization of kainateselective gluta-mate receptor subunits GluR5, GluR6, and GluR7 in the cat retina. Brain Res. 2001;890:211-221. https://doi.org/10.1016/S0006-8993(00)03162-0
  17. Marc RE. Kainate activation of horizontal, bipolar, amacrine, and ganglion cells in the rabbit retina. J Comp Neurol. 1999;407:65-76. https://doi.org/10.1002/(SICI)1096-9861(19990428)407:1<65::AID-CNE5>3.0.CO;2-1
  18. Furukawa H. Structure and function of glutamate receptor amino terminal domains. J Physiol. 2012;590:63-72. https://doi.org/10.1113/jphysiol.2011.213850
  19. Stephenson FA. Structure and trafficking of NMDA and GABAA receptors. Biochem Soc Trans. 2006;34:877-881. https://doi.org/10.1042/BST0340877
  20. Stephenson FA. Subunit characterization of NMDA receptors. Curr Drug Targets. 2001;2:233-239. https://doi.org/10.2174/1389450013348461
  21. Paoletti P. Molecular basis of NMDA receptor functional diversity. Eur J Neurosci. 2011;33:1351-1365. https://doi.org/10.1111/j.1460-9568.2011.07628.x
  22. Thoreson WB, Witkovsky P. Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res. 1999; 18:765-810. https://doi.org/10.1016/S1350-9462(98)00031-7
  23. Jeong SA, Kwon OJ, Lee JY, Kim TJ, Jeon CJ. Synaptic pattern of AMPA receptor subtypes upon direction-selective retinal ganglion cells. Neuroscience Research. 2006; 56:427-434. https://doi.org/10.1016/j.neures.2006.08.011
  24. Kwon OJ, Kim MS, Kim TJ, Jeon CJ. Identification of synaptic pattern of kainate glutamate receptor subtypes on direction-selective retinal ganglion cells. Neuroscience Research. 2007;58:255-264. https://doi.org/10.1016/j.neures.2007.03.009
  25. Lee JG, Kwon OJ, Jeon CJ. Synaptic pattern of NMDA R1 upon the direction-selective retinal ganglion cells in developing mouse retina. J Korean Ophthalmic Opt Soc. 2013; 18(4):533-540. https://doi.org/10.14479/jkoos.2013.18.4.533
  26. Jeon YK, Joo YR, Ye EA, Kim MS, Jeon CJ. Histochemocal analysis of the cone cells in the retina of the greater horseshoe bat. J Korean Ophthalmic Opt Soc. 2013;18(2): 187-191. https://doi.org/10.14479/jkoos.2013.18.2.187
  27. Wang D, Oakley T, Mower J, Shimmin LC, Yim S, Honeycutt RL. Molecular evolution of bat color vision genes. Mol Biol Evol. 2004;21(2):295-302.
  28. Winter Y, Lopez J, von Halversen O. Ultraviolet vision in a bat. Nature. 2003;425:612-614. https://doi.org/10.1038/nature01971
  29. Dacheu RF, Raviola E. The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J Neurosci. 1986;6(2):331-345. https://doi.org/10.1523/JNEUROSCI.06-02-00331.1986
  30. Michael K, Daniel S, Lisa F, Silke H, Heinz W. Localization of NMDA receptor subunits and mapping NMDA drive within the mammalian retina. Visual Neuroscience. 2004;21:587-597. https://doi.org/10.1017/S0952523804214080

피인용 문헌

  1. Localization of the Major Retinal Neurotransmitters and Receptors and Müller Glia in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) vol.20, pp.3, 2015, https://doi.org/10.14479/jkoos.2015.20.3.391