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EXISTENCE OF A POSITIVE INFIMUM EIGENVALUE

FOR THE p(x)-LAPLACIAN NEUMANN PROBLEMS

WITH WEIGHTED FUNCTIONS

Yun-Ho Kim

Abstract. We study the following nonlinear problem

−div(w(x)|∇u|p(x)−2∇u) + |u|p(x)−2u = λf(x, u) in Ω

which is subject to Neumann boundary condition. Under suitable
conditions on w and f , we give the existence of a positive infimum
eigenvalue for the p(x)-Laplacian Neumann problem.

1. Introduction

In the present paper, we are concerned with the existence of a positive
infimum eigenvalue for the p(x)-Laplacian problem with the degeneracy
subject to Neumann boundary condition

(B)

{
−div(w(x)|∇u|p(x)−2∇u) + |u|p(x)−2 u = λf(x, u) in Ω
∂u
∂n

= 0 on ∂Ω,

where Ω is a bounded domain in RN with Lipschitz boundary ∂Ω, ∂u
∂n

denotes the outer normal derivative of u with respect to ∂Ω, the variable
exponent p : Ω → (1,∞) is a continuous function, g ∈ L∞(Ω), w is a
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weighted function in Ω and f : Ω × R → R satisfies a Carathéodory
condition.

The studies for the p(x)-Laplacian problems have been extensively
considered by several authors in various ways; see for example [2–6,8] and
references therein. Compared to the p-Laplacian equation, an analysis
for the p(x)-Laplacian equation has to be carried out more carefully
because it has complicated nonlinearities (it is nonhomogeneous) and
includes a weighted function. Unlike the p-Laplacian case, under some
conditions on p(x), the first eigenvalue for the p(x)-Laplacian Neumann
problems is not isolated(see [6]), that is, the infimum of all eigenvalues of
the problem might be zero(see [5] for Dirichlet boundary condition). The
goal of this paper is to give sufficient conditions on w and f to satisfy
the positivity of the infimum of all eigenvalues for (B) still. To the best
of our knowledge, there are no papers concerned with the positivity of
the infimum of all eigenvalues for the p(x)-Laplacian Neumann problems
with weighted functions.

To make a self-contained paper, we recall some definitions and basic
properties of the weighted variable exponent Lebesgue spaces Lp(·)(w,Ω)
and the weighted variable exponent Lebesgue-Sobolev spacesW 1,p(·)(w,Ω).

Set

C+(Ω) =

{
h ∈ C(Ω) : min

x∈Ω
h(x) > 1

}
.

For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

Let w is a measurable positive and a.e. finite function in Ω. For any
p ∈ C+(Ω), we introduce the weighted variable exponent Lebesgue space
Lp(x)(w,Ω) that consists of all measurable real-valued functions u satis-
fying ∫

Ω

w(x)|u(x)|p(x) dx <∞,

endowed with the Luxemburg norm

||u||Lp(·)(w,Ω) = inf

{
λ > 0 :

∫
Ω

w(x)
∣∣∣u(x)

λ

∣∣∣p(·) dx ≤ 1

}
.

The weighted variable exponent Sobolev space X = W 1,p(·)(w,Ω) is de-
fined by

X =
{
u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(w,Ω)

}
,
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where the norm is

(1.1) ||u||X = ||u||Lp(·)(Ω) + ||∇u||Lp(·)(w,Ω).

This paper is organized as follows. We first introduce some basic re-
sults for the weighted variable exponent Lebesgue-Sobolev spaces which
is given in [8]. Next we show the existence of a positive infimum eigen-
value for the p(x)-Laplacian problem with the degeneracy subject to
Neumann boundary condition.

2. Preliminaries

In this section, we first state some elementary properties for the
(weighted) variable exponent Lebesgue-Sobolev spaces which play a cru-
cial role in obtaining our main result. The basic properties of the variable
exponent Lebesgue-Sobolev spaces, that is, when w(x) ≡ 1 can be found
from [3].

Lemma 2.1. ( [3]) The space Lp(·)(Ω) is a separable, uniformly con-
vex Banach space, and its conjugate space is Lp

′(·)(Ω) where 1/p(x) +
1/p′(x) = 1. For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have∣∣∣ ∫

Ω

uv dx
∣∣∣ ≤ ( 1

p−
+

1

(p)′−

)
||u||Lp(·)(Ω)||v||Lp′(·)(Ω) ≤ 2||u||Lp(·)(Ω)||v||Lp′(·)(Ω).

Lemma 2.2. ( [8]) Denote

ρ(u) =

∫
Ω

w(x)|u|p(x) dx, for all u ∈ Lp(·)(w,Ω).

Then

(1) ρ(u) > 1 (= 1; < 1) if and only if ||u||Lp(·)(w,Ω) > 1 (= 1; < 1),
respectively;

(2) If ||u||Lp(·)(w,Ω) > 1, then ||u||p−
Lp(·)(w,Ω)

≤ ρ(u) ≤ ||u||p+
Lp(·)(w,Ω)

;

(3) If ||u||Lp(·)(w,Ω) < 1, then ||u||p+
Lp(·)(w,Ω)

≤ ρ(u) ≤ ||u||p−
Lp(·)(w,Ω)

.

Lemma 2.3. ( [11]) Let q ∈ L∞(Ω) be such that 1 ≤ p(x)q(x) ≤ ∞
for almost all x ∈ Ω. If u ∈ Lq(·)(Ω) with u 6= 0, then

(1) If ||u||Lp(·)q(·)(w,Ω) > 1, then

||u||q−
Lp(·)q(·)(w,Ω)

≤ || |u|q(x) ||Lp(·)(w,Ω) ≤ ||u||
q+
Lp(·)q(·)(w,Ω)

;
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(2) If ||u||Lp(·)q(·)(w,Ω) < 1, then

||u||q+
Lp(·)q(·)(w,Ω)

≤ || |u|q(x) ||Lp(·)(w,Ω) ≤ ||u||
q−
Lp(·)q(·)(w,Ω)

.

We assume that w is a measurable positive and a.e. finite function in
Ω satisfying that

(w1) w ∈ L1
loc(Ω) and w−1/(p(x)−1) ∈ L1

loc(Ω);

(w2) w−s(x) ∈ L1(Ω) with s(x) ∈
(

N
p(x)

,∞
)
∩
[

1
p(x)−1

,∞
)

.

The reasons that we assume (w1) and (w2) can be found in [8].
For p, s ∈ C+(Ω), let us denote

ps(x) :=
p(x)s(x)

1 + s(x)
< p(x),

where s(x) is given in (w2) and

(2.1) p∗s(x) :=

{
p(x)s(x)N

(s(x)+1)N−p(x)s(x)
if N > ps(x),

+∞ if N ≤ ps(x),

for almost all x ∈ Ω.

We shall frequently make use of the following (compact) imbedding
theorem for the weighted variable exponent Lebesgue-Sobolev space in
the next sections.

Lemma 2.4. ( [8]) Let Ω ⊂ RN be an open, bounded set with Lipschitz
boundary and p ∈ C+(Ω) with 1 < p− ≤ p+ < ∞. If assumptions (w1)
and (w2) hold and r ∈ L∞(Ω) with r− > 1 satisfies 1 < r(x) ≤ p∗s for all
x ∈ Ω, then we have

W 1,p(x)(w,Ω) ↪→ Lr(x)(Ω)

and the imbedding is compact if inf
x∈Ω

(p∗s(x)− r(x)) > 0.

3. Main Result

In this section, we shall give the sufficient conditions on w and f to
obtain the positivity of the infimum eigenvalue for the problem (B). Let
us consider the following quantity

(3.1) λ∗ = inf
u∈X\{0}

∫
Ω
w(x)
p(x)
|∇u|p(x) dx+

∫
Ω

1
p(x)
|u|p(x) dx∫

Ω
F (x, u) dx

.
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For the case of F (x, u) = m(x)|u|q(x) and w ≡ 1, where m(x) satisfies
a suitable condition, Benouhiba [1] proved λ∗ > 0 when Ω = RN . Under
Neumann boundary conditions, we shall generalize the condition on f
and give the condition on w to satisfy λ∗ > 0 still.

Definition 3.1. We say that u ∈ X is a weak solution of the problem
(B) if∫

Ω

w(x) |∇u(x)|p(x)−2∇u(x) · ∇ϕ(x) dx+

∫
Ω

|u(x)|p(x)−2 u(x)ϕ(x) dx

= λ

∫
Ω

f(x, u)ϕ(x) dx

for all ϕ ∈ X.

For almost all x ∈ Ω, we assume that

(H1) p, q ∈ C+(Ω), p(x) < N , and 1 < p− ≤ p+ < q− ≤ q+ < p∗s(x).

(H2) m(x) ∈ L
r(·)

r(·)−q(·) (Ω) for some r ∈ C+(Ω) with q(x) < r(x) < p∗s(x)
and meas{x ∈ Ω : m(x) > 0} > 0.

(F1) f : Ω × R → R satisfies the Carathéodory condition in the sense
that f(·, t) is measurable for all t ∈ R and f(x, ·) is continuous for
almost all x ∈ Ω.

(F2) f satisfies the following growth condition: For all (x, t) ∈ Ω × R,
f(x, t)t ≥ 0 and

|f(x, t)| ≤ m(x) |t|q(x)−1 .

where q and m are given in (H1) and (H2), respectively.

Denoting F (x, t) =
∫ t

0
f(x, s) ds, it follows from (F2) that

(F2′) F satisfies the following growth condition:

0 ≤ F (x, t) ≤ m(x)

q(x)
|t|q(x) , for all (x, t) ∈ Ω× R.

Define the functionals Φ,Ψ, Iλ : X → R by

Φ(u) =

∫
Ω

w(x)

p(x)
|∇u|p(x) dx+

∫
Ω

1

p(x)
|u|p(x) dx,

Ψ(u) =

∫
Ω

F (x, u) dx, and Iλ(u) = Φ(u)− λΨ(u).
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Then Φ ∈ C1(X,R) ( [8]) and it is easy to check that Ψ ∈ C1(X,R) and
its Gateaux derivatives are

〈Φ′(u), ϕ〉 =

∫
Ω

w(x) |∇u(x)|p(x)−2∇u(x) · ∇ϕ(x) dx

+

∫
Ω

|u(x)|p(x)−2 u(x)ϕ(x) dx

and

〈Ψ′(u), ϕ〉 =

∫
Ω

f(x, u)ϕ(x) dx

for any u, ϕ ∈ X. Denote

γ(x) =
r(x)

r(x)− q(x)
for almost all x ∈ Ω,

where r and q are given in (H2).

The following existence result of a measurable function is important
to estimate Ψ(u); see [10].

Lemma 3.2. Assume that (w2) and (H1) hold. Then there exist δ
with 0 < δ < 1 and a measurable function `(x) that

max

{
p(x)γ(x)

p(x) + δγ(x)
,

p∗s(x)

p∗s(x) + δ − q(x)

}
≤ `(x)(3.2)

≤ min

{
p∗s(x)γ(x)

p∗s(x) + δγ(x)
,

p(x)

p(x) + δ − q(x)

}
holds for almost all x ∈ Ω and

(3.3) δ
(`+

`−
+ 1
)
< q−.

Moreover, we have ` ∈ L∞(Ω) and 1 < `(x) < γ(x).

The following Lemma plays a key role in obtaining the main result in
this section. The proof of this lemma proceeds the same way as in that
of Lemma 4.3 in [10]. However, we will consider it because our problem
has a Neumann boundary condition.

Lemma 3.3. Assume that (w1), (w2), (H1), (H2), (F1) and (F2) hold
and satisfy

(H3) q+ −
1

2
p− < δ,
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where δ is given in (3.3), then the functionals Φ and Ψ satisfy the fol-
lowing relations:

(3.4) lim
||u||X→0

Φ(u)

Ψ(u)
=∞,

and

(3.5) lim
||u||X→∞

Φ(u)

Ψ(u)
=∞.

Proof. Applying Lemmas 2.1, 2.3 and 2.4, we get

|Ψ(u)| =
∣∣∣∣∫

Ω

F (x, u) dx

∣∣∣∣(3.6)

≤
∫

Ω

∣∣∣∣m(x)

q(x)
|u|q(x)

∣∣∣∣ dx
≤ 2

q−
||m||Lγ(·)(Ω)|| |u|

q(x) ||
L
r(·)
q(·) (Ω)

≤ 2

q−
||m||Lγ(·)(Ω)

(
||u||q+

Lr(·)(Ω)
+ ||u||q−

Lr(·)(Ω)

)
≤ 2c

q−
||m||Lγ(·)(Ω)

(
||u||q+X + ||u||q−X

)
for some positive constant c. Let u in X with ||u||X ≤ 1. Then it follows
from the above inequality and Lemma 2.2 (3) that∣∣∣∣Φ(u)

Ψ(u)

∣∣∣∣ ≥
∫

Ω
w(x)
p(x)
|∇u|p(x) dx+

∫
Ω

1
p(x)
|u|p(x) dx

4c
q−
||m||Lγ(·)(Ω)||u||

q−
X

(3.7)

≥
1
p+
||u||p+X

4c
q−
||m||Lγ(·)(Ω)||u||

q−
X

.

Since q− > p+, we conclude that

Φ(u)

Ψ(u)
→∞ as ||u||X → 0.

Next we will show that the relation (3.5) holds. From (H3) and (3.3),
we get that

(3.8) p+ > p− > 2(q+ − δ) > 2(q− − δ) > δ
`+

`−
.
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Let u ∈ X with ||u||X > 1. Then it follows from (F2′) and Lemma 2.1
that

|Ψ(u)| ≤ 1

q−

∫
Ω

m(x) |u|δ |u|q(x)−δ dx

≤ 2

q−
||m |u|δ ||L`(·)(Ω)|| |u|

q(x)−δ ||L`′(·)(Ω).

Therefore, without loss of generality we may suppose that ||m |u|δ ||L`(·)(Ω) >
1. From the above inequality, by using Lemma 2.2, Lemma 2.1 and
Lemma 2.3 in order, we have

|Ψ(u)| ≤ 2

q−

(∫
Ω

m`(x) |u|δ`(x)
) 1
`−
(
||u||q+−δ

L(q(·)−δ)`′(·)(Ω)
+ ||u||q−−δ

L(q(·)−δ)`′(·)(Ω)

)
≤ 4

q−
||m`(x)||

1
`−

L
γ(·)
`(·) (Ω)

|| |u|δ`(x) ||
1
`−

L
(
γ(·)
`(·) )′

(Ω)

(
||u||q+−δ

L(q(·)−δ)`′(·)(Ω)
+ ||u||q−−δ

L(q(·)−δ)`′(·)(Ω)

)
≤ 4

q−
||m||αLγ(·)(Ω)

(
||u||

δ
`+
`−

L
δ`(·)( γ(·)

`(·) )′
(Ω)

+ ||u||δ
L
δ`(·)( γ(·)

`(·) )′
(Ω)

)
×
(
||u||q+−δ

L(q(·)−δ)`′(·)(Ω)
+ ||u||q−−δ

L(q(·)−δ)`′(·)(Ω)

)
,

where α =

{
`+/`− if ||m||Lγ(·)(Ω) > 1

1 if ||m||Lγ(·)(Ω) ≤ 1.

By Young’s inequality, we get

|Ψ(u)| ≤ 4

q−
||m||αLγ(·)(Ω)

(
||u||

2δ
`+
`−

L
δ`(·)( γ(·)

`(·) )′
(Ω)

+ ||u||2δ
L
δ`(·)( γ(·)

`(·) )′
(Ω)

+ ||u||2(q+−δ)
L(q(·)−δ)`′(·)(Ω)

+ ||u||2(q−−δ)
L(q(·)−δ)`′(·)(Ω)

)
.

From (3.2),

1 < δ`(x)
(γ(x)

`(x)

)′
≤ p∗s(x), 1 < (q(x)− δ)`′(x) ≤ p∗s(x)

hold for almost all x ∈ Ω. Hence it follows from Lemma 2.4 that

(3.9) |Ψ(u)| ≤ 4c

q−
||m||αLγ(x)(Ω)

(
||u||

2δ
`+
`−

X + ||u||2(q+−δ)
X

)
,
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for some positive constant c. Therefore, we obtain that∣∣∣∣Φ(u)

Ψ(u)

∣∣∣∣ ≥ 1
p+
||u||p−X

4c
q−
||m||α

Lγ(·)(Ω)

(
||u||

2δ
`+
`−

X + ||u||2(q+−δ)
X

) .
From (3.8) with the above inequality, we conclude that the relation (3.5)
holds.

Lemma 3.4. Assume that (w1), (w2) and (H1) hold. Then Φ is
weakly lower semi-continuous, i.e., un ⇀ u in X implies that Φ(u) ≤
lim infn→∞Φ(un).

Proof. Let u be fixed in X. Since Φ is convex, we know that Φ(v) ≥
Φ(u) + 〈Φ′(u), v − u〉 for all v ∈ X. Hence we know that Φ is weakly
lower semi-continuous.

Lemma 3.5. Assume that (w1), (w2), (H1)–(H3), (F1) and (F2) hold.
For almost all x ∈ Ω and all t ∈ R the following estimate holds:

(3.10) F (x, t) ≤ 1

q−

(
m(x)γ(x)

γ−
+
|t|r(x)

(γ+)′

)
Moreover, the Nemytskij operator

u 7→ F (x, u(x))

is continuous from Lr(·)(Ω) into L1(Ω).

Proof. Since q(x)(γ(x))′ = r(x), the estimate (3.10) is obtained from
(F2′) and Young’s inequality. For the remaining part, let Ψ0 : Lr(·)(Ω)→
L1(Ω) be an operator defined by

Ψ0(u)(x) = F (x, u(x)).

Let un → u in Lr(·)(Ω) as n → ∞. Then there exist a subsequence
(unk) and measurable function v in Lr(·)(Ω) such that unk(x)→ u(x) as
k → ∞ for almost all x ∈ Ω and |unk(x)| ≤ v(x) for all k ∈ N and for
almost all x ∈ Ω. We have by (3.10) that

||Ψ0(unk)−Ψ0(u)||L1(Ω) =

∫
Ω

|F (x, unk(x))− F (x, u(x))| dx

≤ C

∫
Ω

(
|m(x)|γ(x) + |unk(x)|r(x) + |u(x)|r(x) ) dx
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for a positive constant C. Since F satisfies a Carathéodory condition by
(F1) and (3.10), we obtain that F (x, unk(x))−F (x, u(x))→ 0 as k →∞
for almost all x ∈ Ω. Therefore the Lebesgue convergence theorem
implies that Ψ0(unk) → Ψ0(u) in L1(Ω) as k → ∞. We conclude that
Ψ0 is continuous.

Lemma 3.6. Assume that (w1), (w2), (H1), (H2), (F1) and (F2) hold.
Then Ψ is weakly-strongly continuous, i.e., un ⇀ u in X implies that
Ψ(un)→ Ψ(u).

Proof. Let {un} be a sequence in X such that un ⇀ u in X. Since
1 < r(x) < p∗s(x), Lemma 2.4 implies un → u in Lr(·)(Ω). This together
with Lemma 3.5 yields that Ψ(un) → Ψ(u) as n → ∞. The proof is
completed.

Lemma 3.7. Assume that (w1), (w2), (H1), (H2), (F1) and (F2) hold.
Then Iλ is coercive for all λ > 0.

Proof. Let u ∈ X with ||u||X > 1. Proceeding as in the proof of
relation (3.9) in Lemma 3.3, we deduce

Iλ(u) ≥ c

p+

||u||p−X − λ
4C

q−
||m||αLγ(·)(Ω)

(
||u||

2δ
`+
`−

X + ||u||2(q+−δ)
X

)
.

Since p− > 2(q+ − δ) > 2δ(`+/`−), the above inequality implies that
Iλ(u)→∞ as ||u||X →∞ for all λ > 0, that is, Iλ is coercive. The proof
is completed.

We are in position to state the main results about the existence of
the positive infimum eigenvalue for the problem (B). We can modify
the proof of Theorem 3.1 in [1] with the aid of Lemmas 3.3, 3.4, and 3.6
to get the next theorem. For convenience, we consider the proof of the
following assertion.

Theorem 3.8. Assume that (w1), (w2), (H1)-(H3), (F1) and (F2)
hold. Then λ∗ is a positive eigenvalue of the problem (B). Moreover the
problem (B) has a nontrivial weak solution for any λ ≥ λ∗.

Proof. It is trivial by (3.1) that λ∗ ≥ 0. Suppose to the contrary that
λ∗ = 0. Let {un} be a sequence in X \ {0} such that

lim
n→∞

Φ(un)

Ψ(un)
= 0.
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As in (3.7), we have ∣∣∣∣Φ(un)

Ψ(un)

∣∣∣∣ ≥ C||un||p+−q−X

for some positive constant C. Since p+ < q−, we obtain that ||un||X →∞
as n→∞. Hence it follows from Lemma 3.3 that

lim
n→∞

Φ(un)

Ψ(un)
=∞,

which contradicts with the hypothesis. Hence we get λ∗ > 0.

Next, we prove that λ∗ is an eigenvalue for the problem (B). Let
{un} ⊆ X \ {0} be a minimizing sequence for λ∗, namely,

(3.11) λ∗ = lim
n→∞

Φ(un)

Ψ(un)
.

From Lemma 3.3, {un} is bounded in X and so un ⇀ u in X as n→∞
for some nonzero element u ∈ X. Indeed, suppose that u ≡ 0. Since
Ψ is weakly-strongly continuous, we know that Ψ(un) → 0 as n → ∞.
Using (3.11), we assert that

lim
n→∞

Φ(un) = lim
n→∞

Φ(un)

Ψ(un)
Ψ(un) = 0.

Since either Φ(un) ≥ ||un||p+X or Φ(un) ≥ ||un||p−X by Lemma 2.2, we know
that ||un||X → 0 as n→∞. Applying Lemma 3.3, we deduce that

lim
n→∞

Φ(un)

Ψ(un)
=∞,

contradiction. Thus we have that u 6≡ 0. Since un ⇀ u in X as n→∞,
we get by Lemmas 3.4 and 3.6 that

(3.12) Φ(u) ≤ lim inf
n→∞

Φ(un) and Ψ(un)→ Ψ(u).

Hence the definition of λ∗ and relation (3.12) imply that Φ(u) = λ∗Ψ(u).
Therefore λ∗ is a positive eigenvalue of the problem (B).

Finally, we show that the problem (B) has a nontrivial weak solution
for any λ ≥ λ∗. Notice that u is a weak solution of (B) if and only if u is
a critical point of Iλ. Assume that λ > λ∗ is fixed. Since the functional
Iλ is weakly lower semi-continuous and coercive by Lemmas 3.4, 3.6, and
3.7, we deduce that there exists a global minimizer u0 of Iλ in X; see [9].
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Since λ > λ∗, we ensure by definition (3.1) that there is an element ω in
X \ {0} such that Φ(ω)/Ψ(ω) < λ. Then Iλ(ω) < 0. So we get that

Iλ(u1) = inf
v∈X\{0}

Iλ(v) < 0.

Consequently, we conclude that u0 6≡ 0. This completes the proof.
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