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LINEARLIZATION OF GENERALIZED FIBONACCI

SEQUENCES

Young Ho Jang and Sang Pyo Jun†

Abstract. In this paper, we give linearization of generalized Fi-
bonacci sequences {gn} and {qn}, respectively, defined by Eq.(5)
and Eq.(6) below and use this result to give the matrix form of the
nth power of a companion matrix of {gn} and {qn}, respectively.
Then we re-prove the Cassini’s identity for {gn} and {qn}, respec-
tively.

1. Introduction

Let Q =

(
1 1
1 0

)
be a companion matrix of the Fibonacci sequence

{fn} defined by the second-order linear recurrence relation

f0 = 0, f1 = 1, fn = fn−1 + fn−2 (n ≥ 2).

Then, by an inductive argument ([10], [7], [8]), the nth power Qn has
the matrix form

(1) Qn =

(
fn+1 fn
fn fn−1

)
(n ≥ 1).
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This property provides an alternate proof of the Cassini’s identity for
{fn}

fn−1fn+1 − f 2
n = (−1)n (n ≥ 1).

Now, let’s think of the other access method in order to give the matrix
form Eq.(1) of Qn. This method give the motivation of our research.
That is, our research is based on the following observation: It is well
known [5] that the usual Fibonacci numbers can be expressed using
Binet’s formula

(2) fn =
1√
5

[(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n]
=
αn − βn

α− β
,

where α, β are the roots of the quadratic equation x2 − x − 1 = 0 and
α > β. From the Binet’s formula Eq.(2), we have for any integer n ≥ 1

(3) fn − βfn−1 =
αn − βn

α− β
− β(αn−1 − βn−1)

α− β
=
αn−1(α− β)

α− β
= αn−1.

Multipling Eq.(3) by α, using αβ = −1, and if we change α and β role
above process, we obtain the linearization of {fn}

(4) Linearization of {fn} :

{
αn = fnα + fn−1,
βn = fnβ + fn−1.

In Eq.(4), if we change α, β into the companion matrix Q and change
fn−1 into the matrix fn−1I, where I is the 2 × 2 identity matrix, then
we obtain the matrix form Eq.(1) of Qn

Qn = fnQ+ fn−1I

(
=

(
fn+1 fn
fn fn−1

))
.

The Fibonacci sequence has been generalized in many ways, for ex-
ample, by changing the recurrence relation while preserving the initial
terms, by altering the initial terms but maintaining the recurrence rela-
tion, by combining of these two techniques, and so on (for more details
see [2, 3, 4, 7, 11]).

In this paper, we consider two types of generalized Fibonacci se-
quences which are basically different. One is the sequence {gn} de-
fined by Gupta et al. [4] depending on four positive integer parameters
g0, g1, a and b used in the secon-order linear recurrence relation:

(5) gn = agn−1 + bgn−2 (n ≥ 2)
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Another is the sequence {qn} defined by Edson et al. [2] depending on
two positive integer parameters a and b used in the secon-order non-
linear recurrence relation:

(6) q0 = 0, q1 = 1, qn =

{
aqn−1 + qn−2, if n is even
bqn−1 + qn−2, if n is odd

(n ≥ 2)

In this paper, as mentioned above, we provide linearlization of {gn}
and {qn}, respectively, and use this result to give the matrix form of the
nth power of a companion matrix of {gn} and {qn}, repectively. Then
we re-prove the Cassini’s identity for {gn} and {qn}, respectively.

2. Linearlization of the generalized Fibonacci sequences {gn}

Many number theory texts(see for example, Niven and Zuckermann
[9]) prove that the analogous Binet’s formula for the generalized Fi-
bonacci sequence {gn} defined by Eq.(5) is

(7) (α− β)gn = g1(α
n − βn) + g0(αβ

n − βαn),

where α, β are the roots of the quadratic equation x2 − ax − b = 0
provided a2 + 4b 6= 0.

In [12], using an inductive argument, authors give the matrix form of

the nth power of a companion matrix M =

(
a b
1 0

)
of {gn}

(8) Mn

(
g2 g1
g1 g0

)
=

(
gn+2 gn+1

gn+1 gn

)
.

And then give the Cassini’s identity for {gn} by taking determinant both
sides of the matrix form Eq.(8)

(9) gngn+2 − g2n+1 = (−b)n(g0g2 − g21).

In this subsection, we give the linealization of {gn} and then use this
result to obtain the matrix form Eq.(8).

Theorem 2.1. Let {gn}, α and β be as above. Then we have for all
integer n ≥ 1

(10) Linearization of {gn} :

{
αn(g1α + bg0) = gn+1α + bgn,
βn(g1β + bg0) = gn+1β + bgn.
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Proof. Using the Binet’s formula Eq.(7), we have

(α− β)gn+1 − β(α− β)gn

= g1(α
n+1 − βn+1) + g0(αβ

n+1 − βαn+1)

−g1β(αn − βn)− g0(αβn+1 − β2αn)

= g1α
n(α− β)− g0βαn(α− β).

Since α 6= β, we get

(11) gn+1 − βgn = g1α
n − g0βαn.

Multiplying Eq.(11) by α and using αβ = −b, we have

αgn+1 + bgn = g1α
n+1 + bg0α

n = αn(g1α + bg0).

If we change α and β role above process, we obtain the desired result
Eq.(10).

We can re-prove equations Eq.(8) and Eq.(9) by using the linearliza-
tion Eq.(10) of {gn}.

Corollary 2.2. Let M =

(
a b
1 0

)
be a companion matrix of {gn}.

Then the matrix form of the nth power Mn is given by Eq.(8) and the
Cassini’s identity for {gn} is given by Eq.(9).

Proof. In Eq.(10), if we change α, β into the matrix M and change
bgn into the matrix bgnI, then we have

(12) Mn(g1M + bg0I) = gn+1M + bgnI.

In fact, Eq.(12) holds for the following reason: Since

M

(
gn
gn−1

)
=

(
gn+1

gn

)
and Mn

(
g1
g0

)
=

(
gn+1

gn

)
,
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we have

Mn(g1M + bg0I)

(
g1
g0

)
= g1M

n+1

(
g1
g0

)
+ bg0M

n

(
g1
g0

)
= g1

(
gn+2

gn+1

)
+ bg0

(
gn+1

gn

)
= g1

(
agn+1 + bgn

gn+1

)
+ bg0

(
gn+1

gn

)
=

(
bg1gn + (ag1 + bg0)gn+1

bg0gn + g1gn+1

)
=

(
bg1gn + g2gn+1

bg0gn + g1gn+1

)
= gn+1

(
g2
g1

)
+ bgn

(
g1
g0

)
= gn+1M

(
g1
g0

)
+ bgn

(
g1
g0

)
= (gn+1M + bgnI)

(
g1
g0

)
.

Thus from Eq.(12) we have

Mn(g1M + bg0I) = Mn

(
ag1 + bg0 bg1

g1 bg0

)
= Mn

(
g2 bg1
g1 bg0

)
= Mn

(
g2 g1
g1 g0

)(
1 0
0 b

)
,

gn+1M + bgnI =

(
agn+1 + bgn bgn+1

gn+1 bgn

)
=

(
gn+2 bgn+1

gn+1 bgn

)
=

(
gn+2 gn+1

gn+1 gn

)(
1 0
0 b

)
.

Since the matrix

(
1 0
0 b

)
is invertible, we obtain the desired result

Eq.(8) and by taking determinant both sides of the matrix form Eq.(8)
we obtain the desired result Eq.(9).

3. Linearlization of the generalized Fibonacci sequences {qn}

Edson et al. [2] give the generating function for the generalized Fi-
bonacci sequence {qn} defined by Eq.(6)

F (x) =
x(1 + ax− x2)

1− (ab+ 2)x2 + x4
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and then give the extended Binet’s formula by using the generating
function F (x)

(13) qn =

(
a1−ξ(n)

(ab)
n−ξ(n)

2

)
αn − βn

α− β
,

where α, β are the roots of the quadratic equation x2 − abx − ab = 0
provided a2b2 + 4ab 6= 0 and

(14) ξ(n) =

{
0 if n is even,
1 if n is odd.

is the parity function. Also, using the extended Binet’s formula Eq.(13),
give the Cassini’s identity:

(15) a1−ξ(n)bξ(n)qn−1qn+1 − aξ(n)b1−ξ(n)q2n = a(−1)n.

In this subsection, we give the linealization of {qn} and then use this
result to obtain the matrix form of the nth power of a companion matrix
of {qn}.

Theorem 3.1. Let {qn}, α, β and ξ(n) be as above. Then we have
for all integer n ≥ 1
(16)

Linearization of {qn} :

{
αn = a−1a

n+ξ(n)
2 b

n−ξ(n)
2 qnα + a

n−ξ(n)
2 b

n+ξ(n)
2 qn−1,

βn = a−1a
n+ξ(n)

2 b
n−ξ(n)

2 qnβ + a
n−ξ(n)

2 b
n+ξ(n)

2 qn−1.

Proof. Since Eq.(16) holds for n = 1, let n ≥ 2. Using the extended
Binet’s formula Eq.(13), we have

qn −
β2

ab
qn−2

=

(
a1−ξ(n)

(ab)
n−ξ(n)

2

)
αn − βn

α− β
− β2

ab

(
a1−ξ(n−2)

(ab)
n−2−ξ(n−2)

2

)
αn−2 − βn−2

α− β

=
αn−2

α− β

(
a1−ξ(n)

(ab)
n−ξ(n)

2

α2 − a1−ξ(n−2)

(ab)
n−ξ(n−2)

2

β2

)

− βn

α− β

(
a1−ξ(n)

(ab)
n−ξ(n)

2

− a1−ξ(n−2)

(ab)
n−ξ(n−2)

2

)
.
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Since ξ(n) = ξ(n− 2) and α + β = ab, we get

(17) qn −
β2

ab
qn−2 =

a1−ξ(n)

(ab)
n−ξ(n)

2
−1
αn−2.

Multiplying Eq.(17) by α2

ab
= α + 1 and using αβ = −ab, we have

qnα + (qn − qn−2) =
a1−ξ(n)

(ab)
n−ξ(n)

2

αn.

From the definitions Eq.(6) and Eq.(14), we have qn − qn−2
= a1−ξ(n)bξ(n)qn−1. Thus we have

qnα + a1−ξ(n)bξ(n)qn−1 =
a1−ξ(n)

(ab)
n−ξ(n)

2

αn.

Also, if we change α and β role above process, we obtain the desired
result Eq.(16).

Remark. For some positive integer k, if a = b = k, then {qn} is the
k-Fibonacci sequence {fk,n} (for more details see [1]). In this case, let

Q =

(
k 1
1 0

)
be a companion matrix of {fk,n} and

φ =
1

2
(k +

√
k2 + 4), ϕ =

1

2
(k −

√
k2 + 4)

be the roots of the quadratic equation x2−kx−1 = 0 provided k2+4 6= 0.
Then

α =
1

2
(k2 +

√
k4 + 4k2) = kφ, β =

1

2
(k2 −

√
k4 + 4k2) = kϕ,

a−1a
n+ξ(n)

2 b
n−ξ(n)

2 = kn−1, a
n−ξ(n)

2 b
n+ξ(n)

2 = kn.

Thus we have

Eq.(16)⇔
{

(kφ)n = kn−1fk.nkφ+ knfk,n−1,
(kϕ)n = kn−1fk.nkϕ+ knfk,n−1.

⇔
{
φn = fk,nφ+ fk,n−1,
ϕn = fk,nϕ+ fk,n−1.

and if we change φ, ϕ into the matrix Q and change fk,n−1 into the matrix
fk,n−1I, then the matrix form of the nth power Qn is given by

Qn = fk,nQ+ fk,n−1I =

(
fk,n+1 fk,n
fk,n fk,n−1

)
(see [6], page 2)
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and we obtain the Cassini’s identity for {fk,n}
fk,n−1fk,n+1 − f 2

k,n = (−1)n (see [1], Proposition 3).

Lemma 3.2. Let M =

(
ab b
a 0

)
be a companion matrix of the gener-

alized Fibonacci sequence {qn} defined by Eq.(6). Then we have for all
integer n ≥ 1,

(18) M2n−1
(
q1
q0

)
= (ab)n−1

(
bq2n
aq2n−1

)
and

(19) M2n

(
q1
q0

)
= (ab)n

(
q2n+1

q2n

)
.

Proof. We will use the induction method on n. If n = 1, then

LHS of Eq.(18) = M

(
q1
q0

)
=

(
ab b
a 0

)(
q1
q0

)
=

(
b(aq1 + q0)

aq1

)
=

(
bq2
aq1

)
= RHS of Eq.(18).

We suppose that Eq.(18) holds for n = 2, 3, · · · ,m, i.e.,

M2n−1
(
q1
q0

)
= (ab)n−1

(
bq2n
aq2n−1

)
.

Now, we show that Eq.(18) holds for n = m + 1. By assumption, we
have

M2m+1

(
q1
q0

)
= M2

{
M2m−1

(
q1
q0

)}
= (ab)m−1M2

(
bq2m
aq2m−1

)
= (ab)m−1

(
ab b
a 0

)(
ab b
a 0

)(
bq2m
aq2m−1

)
= (ab)m−1

(
ab b
a 0

)(
ab2q2m + abq2m−1

abq2m

)
= (ab)m

(
ab b
a 0

)(
bq2m + q2m−1

q2m

)
= (ab)m

(
ab b
a 0

)(
q2m+1

q2m

)
= (ab)m

(
b(aq2m+1 + q2m)

aq2m+1

)
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= (ab)m
(
bq2m+2

aq2m+1

)
.

Next, using Eq.(18) we obtain Eq.(19) as follows:

M2n

(
q1
q0

)
= M

{
M2n−1

(
q1
q0

)}
= M

{
(ab)n−1

(
bq2n
aq2n−1

)}
= (ab)n−1

(
ab b
a 0

)(
bq2n
aq2n−1

)
= (ab)n−1

(
ab2q2n + abq2n−1

abq2n

)
= (ab)n

(
bq2n + q2n−1

q2n

)
= (ab)n

(
q2n+1

q2n

)
.

Theorem 3.3. Let M =

(
ab b
a 0

)
be a companion matrix of the

generalized Fibonacci sequence {qn} defined by Eq.(6). For all integer
n ≥ 1, the matrix form of the nth power Mn is given by

(20)


M2n−1 = (ab)n−1

(
bq2n bq2n−1
aq2n−1 bq2n−2

)
,

M2n = (ab)n−1b

(
aq2n+1 bq2n
aq2n aq2n−1

)
.

Proof. From Eq.(16) we have{
α2n−1 = (ab)n−1(q2n−1α + bq2n−2),
β2n−1 = (ab)n−1(q2n−1β + bq2n−2),

and

{
α2n = (ab)n−1b(q2nα + aq2n−1),
β2n = (ab)n−1b(q2nβ + aq2n−1).

(21)

In Eq.(21), if we change α, β into the matrixM and change bq2n−2, aq2n−1
into the matrix bq2n−2I, aq2n−1I, then we have

(22)

{
M2n−1 = (ab)n−1(q2n−1M + bq2n−2I),
M2n = (ab)n−1b(q2nM + aq2n−1I).
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In fact, Eq.(22) holds for the following reason: using Eq.(18) and Eq.(19)
in Lemma 3.2,

M2n−1
(
q1
q0

)
= (ab)n−1

(
bq2n
aq2n−1

)
and

(ab)n−1(q2n−1M + bq2n−2I)

(
q1
q0

)
= (ab)n−1

(
abq2n−1 + bq2n−2 bq2n−1

aq2n−1 bq2n−2

)(
q1
q0

)
= (ab)n−1

(
abq2n−1 + bq2n−2

aq2n−1

)
= (ab)n−1

(
b(aq2n−1 + q2n−2)

aq2n−1

)
= (ab)n−1

(
bq2n
aq2n−1

)
.

Similarly,

M2n

(
q1
q0

)
= (ab)n

(
q2n+1

q2n

)
and

(ab)n−1b(q2nM + aq2n−1I)

(
q1
q0

)
= (ab)n−1b

(
abq2n + aq2n−1 bq2n

aq2n aq2n−1

)(
q1
q0

)
= (ab)n−1b

(
abq2n + aq2n−2

aq2n

)
= (ab)n−1b

(
a(bq2n + q2n−1)

aq2n

)
= (ab)n−1b

(
aq2n+1

aq2n

)
= (ab)n

(
q2n+1

q2n

)
.
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Thus from Eq.(22) we obtain the desired result Eq.(20) as follows:

M2n−1 = (ab)n−1(q2n−1M + bq2n−2I)

= (ab)n−1
(
q2n−1

(
ab b
a 0

)
+ bq2n−2

(
1 0
0 1

))
= (ab)n−1

(
b(aq2n−1 + q2n−2) bq2n−1

aq2n−1 bq2n−2

)
= (ab)n−1

(
bq2n bq2n−1
aq2n−1 bq2n−2

)
and

M2n = (ab)n−1b(q2nM + aq2n−1I)

= (ab)n−1b

(
q2n

(
ab b
a 0

)
+ aq2n−1

(
1 0
0 1

))
= (ab)n−1b

(
a(bq2n + q2n−1) bq2n

aq2n aq2n−1

)
= (ab)n−1b

(
aq2n+1 bq2n
aq2n aq2n−1

)
.

Remark. By taking determinant both sides of the matrix form Eq.(20)
in Theorem 3.3, we have∣∣∣∣∣
(
ab b
a 0

)2n−1
∣∣∣∣∣ =

∣∣∣∣(ab)n−1( bq2n bq2n−1
aq2n−1 bq2n−2

)∣∣∣∣ ⇔ −a = bq2n−2q2n−aq22n−1

and∣∣∣∣∣
(
ab b
a 0

)2n
∣∣∣∣∣ =

∣∣∣∣(ab)n−1b(aq2n+1 bq2n
aq2n aq2n−1

)∣∣∣∣ ⇔ a = aq2n−1q2n+1 − bq22n,

that is, using the parity function ξ(n) defined by Eq.(14), we obtain the
Cassini’s identity Eq.(15) for {qn}

a1−ξ(n)bξ(n)qn−1qn+1 − aξ(n)b1−ξ(n)q2n = a(−1)n.
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