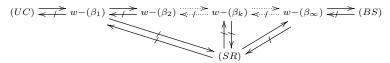
A NOTE ON SOME UNIFORM GEOMETRICAL PROPERTIES IN BANACH SPACES

Kyugeun Cho and Chongsung Lee[†]

ABSTRACT. In this paper, we investigate relationship between superreflexivity and weak property (β_k) . Indeed, we get the following diagram.



1. Introduction

Let $(X, \|\cdot\|)$ be a real Banach space and X^* the dual space of X. By B_X and S_X , we denote the closed unit ball of X and the unit sphere of X, respectively. Denote by \mathbb{N} and \mathbb{R} the set of natural numbers and real numbers, respectively.

A Banach space is said to be reflexive if the natural embedding $\eta: X \to X^{**}$ is onto. A Banach space Y is said to be finitely representable in a Banach space X if for every $\epsilon > 0$ and for every finite-dimensional subspace F of Y there exists an isomorphism T from F into X satisfying

$$(1 - \epsilon) ||y|| \le ||Ty|| \le (1 + \epsilon) ||y||.$$

Received June 26, 2014. Revised September 18, 2014. Accepted September 18, 2014.

²⁰¹⁰ Mathematics Subject Classification: 46B20.

Key words and phrases: superreflexivity, weak property (β_k) .

[†] This work was supported by the Inha University Research Grant.

[©] The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

A Banach space X is said to be superreflexive (SR) if every Banach space Y finitely representable in X is reflexive. We shall say that a Banach space is uniformly convexifiable if it is isomorphic to a uniformly convex space, that is, if it can be endowed with an equivalent uniformly convex norm. It is well known that superreflexivity and uniform convexifiability are equivalent [1]. A Banach space X is said to have Banach-Saks property (BS) if any bounded sequence in the space admits a subsequence whose arithmetic means converges in norm. In similar way, we say that a Banach space X has weak Banach-Saks property (w-BS) if any weakly convergent sequence in the space admits a subsequence whose arithmetic means converges in norm. Since any weakly convergent sequence is norm bounded, it follows that Banach-Saks property implies weak Banach-Saks property. We note that weak Banach-Saks property and Banach-Saks property coincide in the reflexive Banach space. A Banach space X is said to be uniformly convex (UC) if for every $\epsilon > 0$, there exists $\delta > 0$ such that if $x, y \in B_X$ and $||x - y|| \ge \epsilon$, $\frac{1}{2}||x + y|| \le 1 - \delta$.

S. Kakutani [4] showed that unform convexity implies Banach-Saks property. T. Nishiura and D. Waterman [5] proved that Banach-Saks property implies reflexivity in Banach spaces.

A Banach space X has the weak property (β_k) if it is reflexive and there exists $\delta > 0$ such that for any $x \in B_X$ and any weakly null sequence $(x_n) \in B_X$ there exist $n_i \in \mathbb{N}, i = 1, 2, \dots, k$ with $n_1 < n_2 < \dots < n_k$ such that

$$\left\| \frac{1}{k+1} \left(x + \sum_{i=1}^{k} x_{n_i} \right) \right\| \le 1 - \delta.$$

We say that X has the weak property (β_{∞}) if it has the weak property (β_k) for some $k \in \mathbb{N}$. K.G. Cho and C.S. Lee [2] introduced the notion of weak property (β_k) and show the following strict implications.

$$(UC) \Rightarrow w - (\beta_1) \Rightarrow w - (\beta_2) \Rightarrow \cdots \Rightarrow w - (\beta_{\infty}) \Rightarrow (BS)$$

In this paper, we study relationship between superreflexivity and weak property (β_k) . The techniques are similar with [3].

2. The weak property (β_k) and supererflexivity in Banach spaces

We begin with the following theorem.

THEOREM 2.1. Superreflexive Banach spaces have the weak property (β_{∞}) .

Proof. Let $(X, \|\cdot\|)$ be a superreflexive Banach space. Then there exists uniformly convex norm $|\cdot|$ and $M \geq m > 0$ such that $m\|x\| \leq |x| \leq M\|x\|$, for all $x \in X$. Suppose that $x \in B_{(X,\|\cdot\|)}$ and (x_n) is a weakly null sequence in $B_{(X,\|\cdot\|)}$. Then (x_n) is weakly null sequence in $(X,|\cdot|)$ and $|x|,|x_n| \leq M$. Since uniformly convexity implies the weak property (β_1) [2], there exists $0 < \delta_0 < 1$ (independent on (x_n)) such that for $\frac{x}{M} \in B_{(X,|\cdot|)}$ and a weakly null sequence $\left(\frac{x_n}{M}\right)_{n\geq 1}$ in $B_{(X,|\cdot|)}$, there exist $n_1 \geq 1$ with

$$\left| \frac{1}{2} \left(\frac{x}{M} + \frac{x_{n_1}}{M} \right) \right| \le 1 - \delta_0.$$

Letting $n_2=n_1+1$, for $\frac{x_{n_2}}{M}\in B_{(X,|\cdot|)}$ and a weakly null sequence $\left(\frac{x_n}{M}\right)_{n>n_2}$ in $B_{(X,|\cdot|)}$, there exist $n_3\geq n_2+1$ with

$$\left| \frac{1}{2} \left(\frac{x_{n_2}}{M} + \frac{x_{n_3}}{M} \right) \right| \le 1 - \delta_0,$$

:

Continuing this process, we get a subsequence (x_{n_i}) of (x_n) with $|x+x_{n_1}| \leq 2M(1-\delta_0)$ and $|x_{n_{2i}}+x_{n_{2i+1}}| \leq 2M(1-\delta_0)$, for all $i \in \mathbb{N}$. Let (x_m^1) be the sequence defined by

$$2x_1^1 = x + x_{n_1}$$
 and $2x_{m+1}^1 = x_{n_{2m}} + x_{n_{2m+1}}$, for all $m \in \mathbb{N}$.

Then (x_n^1) is weakly null and $|x_n^1| \leq M(1 - \delta_0)$. Since $(X, |\cdot|)$ has the weak property (β_1) , for $\frac{x_1^1}{M(1-\delta_0)} \in B_{(X,|\cdot|)}$ and a weakly null sequence $\left(\frac{x_n^1}{M(1-\delta_0)}\right)_{n\geq 2}$ in $B_{(X,|\cdot|)}$ there exists $n_1 > 1$ such that

$$\left| \frac{1}{2} \left(\frac{x_1^1}{M(1 - \delta_0)} + \frac{x_{n_1}^1}{M(1 - \delta_0)} \right) \right| \le 1 - \delta_0.$$

Letting $n_2 = n_1 + 1$, for $\frac{x_{n_2}^1}{M(1-\delta_0)} \in B_{(X,|\cdot|)}$ and a weakly null sequence $\left(\frac{x_n^1}{M(1-\delta_0)}\right)_{n>n_2}$ in $B_{(X,|\cdot|)}$, there exist $n_3 \geq n_2 + 1$ with

$$\left| \frac{1}{2} \left(\frac{x_{n_2}^1}{M(1 - \delta_0)} + \frac{x_{n_3}^1}{M(1 - \delta_0)} \right) \right| \le 1 - \delta_0.$$

:

Continuing this process, we get a subsequence $(x_{n_i}^1)$ of (x_n^1) with

$$|x_1^1 + x_{n_1}^1| \le 2M(1 - \delta_0)^2$$
 and $|x_{n_{2i}}^1 + x_{n_{2i+1}}^1| \le 2M(1 - \delta_0)^2$, for all $i \in \mathbb{N}$.

Without loss of generality, we may assume that $(x_{n_i}^1) = (x_{i+1}^1)$. Continue this process, for all $k \in \mathbb{N}$, we get a subsequence (x_n^k) such that

$$|x_{2i-1}^k + x_{2i}^k| \le 2M(1 - \delta_0)^{k+1}$$
, where $i \in \mathbb{N}$.

For a sufficiently large $N \in \mathbb{N}$, choose $\delta > 0$ such that

$$(1-\delta_0)^{N+1}\frac{M}{m}<1-\delta.$$

Since

$$|x_1^N + x_2^N| \le 2M(1 - \delta_0)^{N+1} < 2m(1 - \delta)$$

and

$$x_1^N + x_2^N = \frac{1}{2}(x_1^{N-1} + x_2^{N-1}) + \frac{1}{2}(x_3^{N-1} + x_4^{N-1})$$

$$= \frac{1}{4}(x_1^{N-2} + x_2^{N-2} + \dots + x_8^{N-2})$$

$$\vdots$$

$$= \frac{1}{2^{N-1}}(x_1^1 + x_2^1 + \dots + x_{2^N}^1)$$

$$= \frac{1}{2^N}(x + x_{n_1} + x_{n_2} + x_{n_3} + \dots + x_{2^{N+1}-2} + x_{2^{N+1}-1}),$$

we get

$$\left| \frac{1}{2^{N+1}} \left(x + \sum_{i=1}^{2^{N+1} - 1} x_{n_i} \right) \right| < (1 - \delta)m.$$

Thus,

$$\left\| \frac{1}{2^{N+1}} \left(x + \sum_{i=1}^{2^{N+1} - 1} x_{n_i} \right) \right\| < (1 - \delta).$$

Since N and δ depend only on X, it follows that X has the weak property $(\beta_{2^{N+1}-1})$, hence the weak property (β_{∞}) .

The following is the example that satisfies the weak property (β_k) without the weak property (β_{k-1}) .

EXAMPLE 1. For $x = (a_n) \in l_2$, we define a norm $||x||_{(k)}$ by

$$||x||_{(k)} = \left[\sup_{n_1 < n_2 < \dots < n_k} \left(\sum_{i=1}^k |a_{n_i}| \right)^2 + \sum_{n \neq n_1, n_2, \dots, n_k} |a_n|^2 \right]^{\frac{1}{2}}$$

Then $||x||_2 \le ||x||_{(k)} \le \sqrt{k} ||x||_2$. Let $X_k = (l_2, ||\cdot||_{(k)})$. Then X_k has the weak property (β_k) but no the weak property (β_{k-1}) [2].

Since X_k is isomorphic to l_2 , X_k is superreflexive. We get the following proposition.

PROPOSITION 2.2. Superreflexivity does not imply the weak property (β_{k-1}) , for all $k \geq 2$.

We now consider the converse of Theorem 2.1 and Proposition 2.2.

THEOREM 2.3. Let Y be a Banach space with a basis (e_n) and with a norm such that if $0 \le |a_n| \le |b_n|$, then

$$\left\| \sum_{n=1}^{\infty} a_n e_n \right\| \le \left\| \sum_{n=1}^{\infty} b_n e_n \right\|.$$

Let (Y_n) be a family of finite dimensional spaces. Let

$$Z = \left\{ x = (x_n) \in \prod_{n=1}^{\infty} Y_n : \sum_{n=1}^{\infty} ||x_n|| e_n \in Y \right\},\,$$

with the norm

$$||x|| = \left|\left|\sum_{n=1}^{\infty} ||x_n|| e_n\right|\right|.$$

If Y has the weak property (β_1) , then Z has the weak property (β_1) .

Proof. We first note that Z is reflexive. Let δ_0 be chosen according to the definition of weak property (β_1) in Y with $0 < \delta_0 < 1$. Let $z = (z_n) \in B_Z$ and $(z^{(i)}) = ((z_n^{(i)}))$ be a weakly null sequence in B_Z . Then $(z_n^{(i)})$ is weakly null in Y_n as $i \to \infty$, for each $n \in \mathbb{N}$. Since Y_n is finite dimensional, $(z_n^{(i)})$ is norm null in Y_n as $i \to \infty$, for each $n \in \mathbb{N}$. Let $x = \sum_{n=1}^{\infty} \|z_n\|e_n$ and $x_i = \sum_{n=1}^{\infty} \|z_n^{(i)}\|e_n$. Then $\|x\| = \|z\| \le 1$ and $\|x_i\| = \|z^{(i)}\| \le 1$. Since the weak property (β_1) implies reflexivity, there exists a weakly convergent subsequence of (x_i) (which we still call (x_i)), say $x_i \to y = \sum_{n=1}^{\infty} a_n e_n$ weakly in Y. For each $n \in \mathbb{N}$, $a_n = e_n^*(x) = \sum_{n=1}^{\infty} a_n e_n$

 $\lim_{i\to\infty} e_n^*(x_i) = \lim_{i\to\infty} \|z_n^{(i)}\| = 0$. This means that (x_i) is weakly null in Y. Since Y has the weak property (β_1) with δ_0 , there exists i_1 such that

$$\frac{1}{2} \left\| \sum_{n=1}^{\infty} \left(\|z_n\| + \left\| z_n^{(i_1)} \right\| \right) e_n \right\| = \frac{1}{2} \|x + x_{i_1}\| \le 1 - \delta_0.$$

Thus,

$$\frac{1}{2} \|z + z^{(i_1)}\| = \frac{1}{2} \left\| \sum_{n=1}^{\infty} \|z_n + z_n^{(i_1)}\| e_n \right\|$$

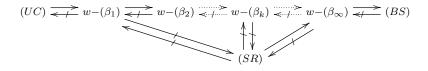
$$\leq \frac{1}{2} \left\| \sum_{n=1}^{\infty} (\|z_n\| + \|z_n^{(i_1)}\|) e_n \right\| \leq 1 - \delta_0.$$

This implies that Z has the weak property (β_1) .

It is well known that $\left(\prod_{n\geq 1}l_1^n\right)_2$ is not superreflexive but reflexive (see, e.g., [1, p.225]). By Theorem 2.3, we get the following.

COROLLARY 2.4. The weak property (β_1) does not imply superreflexity.

By Theorem 2.1, 2.2, Corollary 2.4 and [2], we get the following diagram.



Acknowledgment. We are grateful to the referee for the careful reading of the manuscript and very useful comments.

References

- [1] B. Beauzamy, *Introduction to Banach spaces and their geometry*, Mathematics Studies, **68**, Noth-Holland, Amsterdam, 1982.
- [2] K.G. Cho and C.S. Lee, Weak property (β_k) , Korean J. Math. **20** (2012), 415–422.
- [3] K.G. Cho and C.S. Lee, Superreflexivity and property (D_k) in Banach spaces, J. Appl. Math. Inform. **29** (2011), 1001–1006.
- [4] S. Kakutani, Weak convergence in uniformly convex spaces, Tôhoku Math. J. 45 (1938), 347–354.

[5] T. Nishiura and D. Waterman, Reflexivity and summability, Studia Math. 23 (1963), 53–57.

Kyugeun Cho Bangmok College of General Education Myong Ji University Yong-In 449-728, Korea E-mail: kgjo@mju.ac.kr

Chongsung Lee
Department of Mathematics education
Inha University
Inchon 402-751, Korea
E-mail: cslee@inha.ac.kr