DOI QR코드

DOI QR Code

Relative Influence of Surface and Interfacial Defects in Hydrothermally Grown Nanostructured ZnO

수열 합성된 나노구조를 갖는 ZnO 에 대한 표면 및 계면 결함의 상대적인 영향

  • Park, Cheolmin (Nano-Mechatronics department, Univ. of Science and Technology (UST)) ;
  • Lee, Jihye (Nano-Convergence Mechanical Systems Research Division, Korea Inst. of Machinery & Materials (KIMM)) ;
  • So, Hye-Mi (Nano-Convergence Mechanical Systems Research Division, Korea Inst. of Machinery & Materials (KIMM)) ;
  • Chang, Won Seok (Nano-Mechatronics department, Univ. of Science and Technology (UST))
  • 박철민 (과학기술연합대학원대학교 나노메카트로닉스학과) ;
  • 이지혜 (한국기계연구원 나노융합기계연구본부) ;
  • 소혜미 (한국기계연구원 나노융합기계연구본부) ;
  • 장원석 (과학기술연합대학원대학교 나노메카트로닉스학과)
  • Received : 2014.04.15
  • Accepted : 2014.08.14
  • Published : 2014.10.01

Abstract

The relative concentration of surface and interfacial defects in hydrothermally grown ZnO nanostructures was investigated by a comparison of two samples having different growth temperatures via bias voltage sweep rate under laser illumination of 405 and 355 nm. The current of small ZnO nanostructures (growth temperature of $75^{\circ}C$) decreased when induced more slowly bias voltage sweep rate under the laser illumination. In contrast, the current of large ZnO nanostructures (growth temperature of $90^{\circ}C$) increased. This difference in currents indicates the relation of relative defects concentration between surface and interfacial defects of ZnO nanostructure. Our experimental approach has potential applicability in the analysis of influence on defects in ZnO devices.

온도를 달리하여 수열합성 시킨 두 ZnO nanostructure 의 자외선 검출 소자에 대해 표면 결함과 기판과의 계면 결함의 상대적인 영향을 분석했다. 실험은 laser 가 인가된 상태에서 bias voltage sweep rate을 조절하여, 그에 따른 전류-전압 곡선을 통해 이루어졌다. 수열 성장이 적게 된 ZnO nanostructure의 경우 405, 355 nm laser 인가시, bias voltage sweep rate 을 느리게 할 수록, 전류-전압 기울기가 낮아졌으며, 대조적으로 성장이 크게 된 시료의 경우 기울기가 높아졌다. 이에 대한 이유는 계면과 표면 결함 영향의 차이로 발생됨이 고려됐다. 이와 같이 laser 가 인가된 상태에서 bias voltage sweep rate 에 따른 전류-전압 곡선 분석 실험은 M-S-M (Metal-Semiconductor-Metal) 구조를 갖는 수열 성장된 ZnO 의 표면 및 계면 결함을 관찰하는데 도움을 줄 것으로 생각된다.

Keywords

References

  1. Look, D. C., Reynolds, D. C., Litton, C. W., Jones, R. L., Eason, D. B. and Cantwell, G., 2002, "Characterization of Homoepitaxial P-type ZnO grown by Molecular Beam Epitaxy," Appl. Phys. Lett. 81, 1830-1832. https://doi.org/10.1063/1.1504875
  2. Park, W. I., Yi, G. C., Kim, M. Y. and Pennycook, S. J., 2003, "Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures," Adv. Mater. 15, 526-529. https://doi.org/10.1002/adma.200390122
  3. Hirschwald, W. H., 1985, "Zinc Oxide: An Outstanding Example of a Binary Compound Semiconductor.," Acc. Chem. Res. 18, 228-234. https://doi.org/10.1021/ar00116a001
  4. Fortunato, E., Barquinha, P. & Martins, R., 2012, "Oxide Semiconductor Thin-film Transistors: A Review of Recent Advances," Adv. Mater. 24, 2945-2986. https://doi.org/10.1002/adma.201103228
  5. Jeong, M. C., Oh, B. Y., Ham, M. H., Lee, S. W. and Myoung, J. M., 2007, "ZnO‐Nanowire‐Inserted GaN/ZnO Heterojunction Light‐Emitting Diodes," Small 3, 568-572. https://doi.org/10.1002/smll.200600479
  6. Ruhle, R. S., Van Vugt, L. K., Li, H. Y., Keizer, N. A., Kuipers, L. and Vanmaekelbergh, D, 2008, "Nature of Sub-band Gap Luminescent Eigenmodes in a ZnO Nanowire," Nano Lett. 8, 119-123. https://doi.org/10.1021/nl0721867
  7. Wan, Q., Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P. and Lin, C. L., 2004, "Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors," Appl. Phys. Lett. 84, 3654-3656. https://doi.org/10.1063/1.1738932
  8. Kwon, S., Bang, S., Lee, S., Jeon, S., Jeong, W., Kim, H., Gong, S. C., Chang, H. J., Park, H. and Jeon, H., 2009 "Characteristics of the ZnO Thin Film Transistor by Atomic Layer Deposition at Various Temperatures," Semicond. Sci. Technol. 24, 035015. https://doi.org/10.1088/0268-1242/24/3/035015
  9. Lee, W. W., Kim, S. B., Yi, J., Nichols, W. T. and Park, W. I., 2011, "Surface Polarity-Dependent Cathodoluminescence in Hydrothermally Grown ZnO Hexagonal Rods," The Journal of Physical Chemistry C, 116, 456-460.
  10. Shalish, I., Temkin, H. and Narayanamurti, V., 2004, "Size-dependent Surface Luminescence in ZnO Nanowires," Physical Review B, 69, 245401_1-245401_4.