DOI QR코드

DOI QR Code

Analysis of Particle Motion in Quadrupole Dielectrophoretic Trap with Emphasis on Its Dynamics Properties

사중극자 유전영동 트랩에서의 입자의 동특성에 관한 연구

  • Chandrasekaran, Nichith (Graduate School of Mechanical and Aerospace Engineering, Gyeongsang Nat'l Univ.) ;
  • Yi, Eunhui (Graduate School of Specialized Aerospace Engineering, Gyeongsang Nat'l Univ.) ;
  • Park, Jae Hyun (Dept. of Aerospace and System Engineering, Research Center for Aircraft Parts Technology, Gyeongsang Nat'l Univ.)
  • 니치 찬드라세카란 (경상대학교 기계항공공학부 대학원) ;
  • 이은희 (경상대학교 항공우주특성화대학원) ;
  • 박재현 (경상대학교 항공우주시스템공학과, 항공기부품기술연구소)
  • Received : 2014.05.14
  • Accepted : 2014.08.18
  • Published : 2014.10.01

Abstract

Dielectrophoresis (DEP) is defined as the motion of suspended particles in solvent resulting from polarization forces induced by an inhomogeneous electric field. DEP has been utilized for various biological applications such as trapping, sorting, separation of cells, viruses, nanoparticles. However, the analysis of DEP trapping has mostly employed the period-averaged ponderomotive forces while the dynamic features of DEP trapping have not been attracted because the target object is relatively large. Such approach is not appropriate for the nanoscale analysis in which the size of object is considerably small. In this study, we thoroughly investigate the dynamic response of trapping to various system parameters and its influence on the trapping stability. The effects of particle conductivity on its motion are also focused.

유전영동(DEP)이란 비균질의 전기장과 그에 따라 입자 내부에 형성되는 극성힘에 의해 용매에 분산되어 있는 입자에 야기되는 운동을 의미하며, 세포, 바이러스, 나노입자 등의 트래핑, 입자분류, 셀분리 등과 같은 다양한 생물학적 응용에 이용되어 왔다. 지금까지 유전영동트랩에 대한 해석은 주기평균 ponderomotive force 에 기반한 정특성 해석이 주를 이루고 있으며, 동특성에 대해서는 많은 연구가 이루어져 있지 않다. 이는 지금까지 유전영동트랩이 적용된 입자들의 크기가 상대적으로 매우 크기 때문으로, 분석입자의 크기가 매우 작은 나노단위 분석에서는 적절하지 않다. 본 연구에서는, 다양한 시스템 파라미터들에 대한 트래핑의 동역학적 반응 및 그들의 트래핑 안정성에 대한 영향을 심도깊게 관찰하고자 한다. 특히, 입자의 전도율에 따른 입자의 동특성의 변화 또한 관찰하고자 한다.

Keywords

References

  1. Cetin, B. and Li, D., 2011, "Dielectrophoresis in Microfluidics Technology," Electrophoresis, Vol. 32, pp. 2410-2427. https://doi.org/10.1002/elps.201100167
  2. Voldman, J., 2006, "Electrical Forces for Microscale Cell Manipulation," Annual Reviviews of Biomedical Engineering, Vol. 8, pp. 425-454. https://doi.org/10.1146/annurev.bioeng.8.061505.095739
  3. Jones, T. B., 1995, Electromechanics of Particles, Cambridge University Press, New York.
  4. Kirby, B. J., 2010, Micro- and Nanoscale Fluid Mechanics Transport in Microfluidic Devices, Cambridge University Press, New York.
  5. Wang, X.-B., Huang, Y., Gascoyne, P. R. C. and Becker, F. F., 1997, "Dielectrophoretic Manipulation of Particles," IEEE Transactions on Industrial Applications, Vol. 33, No. 3, pp. 660-669. https://doi.org/10.1109/28.585855
  6. Morgan, H., Hughes, M. P. and Green, N. G., 1999, "Separation of Submicron Bioparticles by Dielectrophoresis," Biophysical Journal, Vol. 77, pp. 516-525. https://doi.org/10.1016/S0006-3495(99)76908-0
  7. Kadaksham, J., Singh, P. and Aubry, N., 2006, "Manipulation of Particles Using Dielectrophoresis," Mechanics Research Communications, Vol. 33, pp. 108-122. https://doi.org/10.1016/j.mechrescom.2005.05.017
  8. Kwon, J.-S., Maeng, J.-S. and Song, S., 2007, "Development and Validation of Numerical Program for Predicting Electrokinetic and Dielectrophoretic Phenomena in a Microchannel," Trans. Korean Soc. Mech. Eng. B, Vol. 31, No. 4, pp. 320-329 https://doi.org/10.3795/KSME-B.2007.31.4.320
  9. Chang, S. and Cho, Y.-H., 2008, "A Continuous Particle-size Sorter Using Negative a Dielectrophoretic Virtual Pillar Array," Trans. Korean Soc. Mech. Eng. B, Vol. 32, No. 11, pp. 824-831 https://doi.org/10.3795/KSME-B.2008.32.11.824
  10. Han, S.-I., Joo, Y.-D. and Han, 2012, K.-H., "Deterministic Lateral Displacement as a Function of Particle Size Using a Piecewise Curved Planar Interdigitated Electrode Array," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 3, pp. 241-249 https://doi.org/10.3795/KSME-B.2012.36.3.241
  11. Jang, L.-S., Huang, P. H. and Lan., K. C., 2009, "Single-cell Trapping Utilizing Negative Dielectrophoretic Quadrupole and Microwell Electrodes," Biosensors and Bioelectronics, Vol. 24, pp. 3637-3644. https://doi.org/10.1016/j.bios.2009.05.027
  12. Li, W. H., Sun, J., Liu, B. and Zhang, X. Z., 2007, "Simulation Study of Quadrupole Dielectrophoretic Trapping," Proceedings of the 4th WSEAS International Conference on Fluid Mechanics, pp. 1-7.
  13. Voldman, J., 2006 "Dielectrophoretic Trap for Cell Manipulation," In BioMEMS and Biomedical Nanotechnology IV: Biomolecular Sensing, Processing and Analysis, M. Ferrari, R. Bashir and S. Wereley (Eds.), Springer, New York, pp. 159-186.
  14. Paul, W., 1990, "Electromagnetic Traps for Charged and Neutral Particles," Reviews of Modern Physics, Vol. 62, No.3, pp. 531-540. https://doi.org/10.1103/RevModPhys.62.531
  15. Voldman, J., Braff, R. A., Toner, M., Gray, L. M. and Schmidt, M. A., 2001, "Holding Forces of Single-Particle Dielectrophoretic Traps," Biophysical Journal, Vol. 80, pp. 531-541. https://doi.org/10.1016/S0006-3495(01)76035-3
  16. Rosenthal, A., Taff, B.M. and Voldman, J., 2006, "Quantitative Modeling of Dielectrophoretic Traps," Lab on a Chip, Vol. 6, pp. 508-515. https://doi.org/10.1039/b600280n
  17. Berkland, D. J., Miller, J. D., Bergquist, J. C., Itano, W. M. and Windland, D. J., 1998, "Minimization of Ion Micromotion in a Paul Trap," Journal of Applied Physics, Vol. 83, pp. 5025-5033. https://doi.org/10.1063/1.367318

Cited by

  1. Determination of lateral and vertical dielectrophoresis forces using tapered microelectrode array pp.1750-0443, 2018, https://doi.org/10.1049/mnl.2017.0542