DOI QR코드

DOI QR Code

Life Assessment of Gas Turbine Blade Based on Actual Operation Condition

실 운전조건을 고려한 가스터빈 블레이드 수명평가

  • 최우성 (한전 전력연구원 발전연구소) ;
  • 송기욱 (한전 전력연구원 발전연구소) ;
  • 장성용 (한전 전력연구원 발전연구소) ;
  • 김범수 (한전 전력연구원 발전연구소)
  • Received : 2014.03.21
  • Accepted : 2014.06.28
  • Published : 2014.10.01

Abstract

Gas turbine blades that have complex geometry of the cooling holes and cooling passages are usually subjected to cyclic and sustained thermal loads due to changes in the operating characteristic in combined power plants; these results in non-uniform temperature and stress distributions according to time to gas turbine blades. Those operation conditions cause creep or thermo-mechanical fatigue damage and reduce the lifetime of gas turbine blades. Thus, an accurate analysis of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a gas turbine. It is well known that computational analysis such as cross-linking process including CFD, heat transfer and stress analysis is used as an alternative to demonstration test. In this paper, temperatures and stresses of gas turbine blade were calculated with fluid-structural analysis integrating fluid-thermal-solid analysis methodologies by considering actual operation conditions. Based on analysis results, additionally, the total lifetime was obtained using creep and thermo-mechanical damage model.

가스터빈 블레이드는 증기터빈 블레이드와 달리 냉각홀 및 냉각유로를 포함한 복잡한 형상으로 되어 있으며 복합화력의 운전특성에 따라 반복적이거나 지속적인 열-기계 하중 조건 하에서 운전된다. 따라서 블레이드는 운전시간에 따라 균일하지 못한 온도 분포나 응력 분포를 보이며, 이는 크리프나 열-기계피로 손상을 유발하며, 결국 가스터빈 블레이드의 수명을 단축시킨다. 결국 다양한 운전 조건에 따라 발생하는 응력을 정확하게 계산하는 것은 설비의 신뢰성을 보장하고 나아가 블레이드와 같은 고온 부품의 정확한 수명을 평가하는데 무엇보다 중요하다. 최근 들어 컴퓨터 기능이 좋아지고 상용 소프트웨어의 성능이 향상되어 실증 시험에 대한 대안으로 유동, 열 및 구조해석을 연결하는 전산해석이 많이 사용되고 있다. 본 논문에서는 가스터빈 실 운전조건을 고려하여 유동-열-구조 해석 기법을 연계하는 유체-구조 연성해석을 통해 블레이드 온도 및 응력분포를 계산하였다. 또한 해석 결과를 토대로 대표적인 손상기구인 크리프 및 열-기계 피로 손상 모델을 이용하여 블레이드의 수명을 평가하였다.

Keywords

References

  1. 2012, "Analysis of Global Market Trnet of Industrial Gas Turbine," KIMM Technology Policy, Vol.6, No.4.
  2. Cho, J. W. and Han, M. S., 2011, "Study on Flow and Stress Analysis of Gas Turbine Blade," Journal of KSMPE, Vol. 10(30), pp. 67-72.
  3. 2005, "Life Management System for Advanced F Class Gas Turbine," EPRI report 1008319.
  4. I/O Database List Document No. : W1176-DOC-002 EWP Ulsan TBN #3, 5, 6 Migration Operation data book.
  5. Choi, W. S, Jeong, J. W, Kim, B. S., 2013, "Life Assessment of Gas Turbine Blade Based on Transient FSI Analysis," Proceeding of the KSME 2013 Spring annual Meeting, pp. 102-103.
  6. Park, J. S. and Kim, J. U., 2002, "A Study on the Turbine Blades Through Thermal-Structural Analysis," Proceeding of the KSME 2002 Spring annual Meeting, pp. 553-558.
  7. Shapiro, A. H., 1953, "The Dynamics and Thermodynamics of Compressible Fluid Flow," Vol. 1 .
  8. Metzger, D. E. and Chyu, M. K., 1989, "Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel," Journal of Heat Transfer, Vol. 111. pp. 73-79. https://doi.org/10.1115/1.3250661
  9. Baldauf, S., Scheurlen, M., Schulz, A. and Witting, S., 2002, "Heat flux Reduction from Film Cooling and Correlation of Heat Transfer Coefficients from Thermographic Measurements at Enginelike Conditions," Correlation of Film-Cooling Effectiveness from Thermographic Measurements at Enginelike Conditions," Journal of Turbomachinery, Vol. 124(4), pp.699-709. https://doi.org/10.1115/1.1505848
  10. Baldauf, S., Scheurlen, M., Schulz, A. and Witting, S., 2002, "Correlation of Film-Cooling Effectiveness from Thermographic Measurements at Engine Like Conditions," Journal of Turbomachinery, Vol. 124(4), pp.686-698. https://doi.org/10.1115/1.1504443
  11. Armstrong, J. and Winstanley, D., 1987, "A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications," 87-GT-201.
  12. Han, J. C., 1988, "Heat Transfer and Friction Characteristics in Rectangular Channels with Rib Turbulators," Journal of Heat Transfer, Vol. 110. pp. 321-328. https://doi.org/10.1115/1.3250487
  13. Wu, X. J. and Koul, A. K., 1996, "Modeling Creep in Complex Engineering Alloys," Creep and Stress Relaxation in Miniature Structures and Components, ed. Harish D. Merchant, TMS, pp.3-19.
  14. Ogata, T., 2010, "Life Prediction Method of CC and DS Ni Base Superalloys Under High Temperature Biaxial Fatigue Loading," Journal of Engineering for Gas Turbines and Power, Vol.132, pp.112101-1. https://doi.org/10.1115/1.4001085
  15. Kim, B. S., Kim, B. S., Choi, W., Musgrove, G. O., McFarland, J.M, Fierro, F. and Ransom, D.L.,2012, "Gas Turbine Blade Stress and Temperature Sensitivity to Turbine Inlet Profile and Cooling Flow," ASME Conference Proceedings, GT2012-69603.
  16. ANSYS, Inc., Version 14.0, 2012 (ANSYS Inc.: New Hampshire).