DOI QR코드

DOI QR Code

Study on the Direct Tensile Test for Cemented Soils Using a Built-In Cylinder

내장형 실린더를 이용한 시멘트 고결토의 인장시험 방법에 관한 연구

  • 박성식 (경북대학교 공과대학 건설환경에너지공학부) ;
  • 이준우 (쌍용시멘트)
  • Received : 2014.05.21
  • Accepted : 2014.07.20
  • Published : 2014.10.01

Abstract

In this study, a cylinder embedded within cemented soils was used to cause directly tensile failure of cemented soils. An existing dumbbell type direct tensile test and a split tensile test that is most general indirect tensile test were also carried out to verify the developed built-in cylinder tensile test. Testing specimens with two different sand/cement ratios (1:1 and 3:1) and two curing periods (7 and 28 days) were prepared and tested. Total 10 specimens were prepared for each case and their average value was evaluated. Unconfined compression tests were also carried out and the ratio of compressive strength and tensile strength was evaluated. The tensile strength determined by built-in cylinder tensile test was slightly higher than that by dumbbell type direct tensile test. The dumbbell type test has often failed in joint part of specimen and showed some difficulty to prepare a specimen. Among three tensile testing methods, the standard deviation of tensile strength by split tensile test was highest. It was shown that the split tensile test is applicable to concrete or rock with elastic failure but not for cemented soils having lower strength.

본 연구에서는 시멘트 고결토 내에 실린더를 내장시킨 다음 유압으로 공시체 내부에서 인장력을 가하여 공시체를 직접 파괴시키는 직접인장시험 방법에 대한 연구를 수행하였다. 또한 기존 아령모양의 공시체를 이용한 직접인장시험과 대표적인 간접인장시험인 쪼갬인장시험을 실시하여 인장시험 방법에 따른 차이를 비교하였다. 인장시험용 공시체는 모래/시멘트비를 3:1 또는 1:1로 제작한 다음 7일 및 28일 동안 대기중 양생하였으며, 동일한 경우에 대해 10개의 공시체를 실험하여 평균값을 비교하였다. 한편 일축압축시험도 실시하여 일축압축강도와 인장강도의 비를 분석하였다. 내장형 실린더를 이용한 직접인장시험으로부터 얻은 인장강도는 아령모양 공시체를 이용한 직접인장시험으로부터 얻은 값보다 다소 높은 인장강도를 보였지만, 아령모양 공시체를 이용한 시험방법은 공시체 제작이 불편하고 시험 중 변곡부에서 파괴되는 경우가 자주 발생하였다. 탄성파괴를 일으키는 콘크리트나 암석에 적용하는 쪼갬인장시험방법으로 부터 얻은 인장강도는 표준편차가 가장 컸을 뿐 아니라, 시멘트 고결토와 같이 강도가 상대적으로 약해 탄소성파괴를 일으키는 재료에는 적용하기 어려웠다.

Keywords

References

  1. Adepegba, D. (1971). "A test for validity of indirect tension tests of stabilized soils." Journal of Materials, Vol. 6, No. 3, pp. 555-575.
  2. Allen, A. (2001). "Contaminant landfills: The Myth of Substantiality." Engineering Geology, Vol. 60, pp. 3-19. https://doi.org/10.1016/S0013-7952(00)00084-3
  3. Bieniawski, Z. T. and Hawkes, I. (1978). "Suggested methods for determining the tensile strength of rock materials; Parts II. ISRM commission on standardization of laboratory and field tests." Int. J Rock Mech Min Sci. Geomech Abstr, Vol. 15, pp. 102-103.
  4. Carniero, F. B. and Barcellos, A. (1953). "Tensile strength of concretes." RILEM Bulletin, No. 13, pp. 97-123.
  5. Fang, H. Y. and Fernandez, J. (1981). "Determination of tensile strength of soils by unconfined-penetration test." ASTM ATP 740, pp. 130-144.
  6. Frydman, S. (1964). "The applicability of the Brazilian (indirect tension) test to soils." Aust. J. Appl. Sci, Vol. 15, pp. 335-343.
  7. George, K. P. (1970). "Theory of brittle fracture applied to soil cement." Jour. of Soil Mech. and Found. Div., Proc. ASCE, Vol. 96, No. SM3, pp. 991-1010.
  8. Griffith, A. A. (1924). "Theory of rupture." Proc. 1st. Int. Congr. Applied Rock Mechanics, Delft, pp. 55-63.
  9. Hobbs, D. W. (1963). "A simple method for assessing the uniaxial compressive strength of rock." Int. J. Rock Mech. Min. Sci, Vol. 1, pp. 5-15.
  10. Hondros, J. R. (1959). "The evaluation of poisson's ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete." Aust. J. Appl. Sci, Vol. 10, pp. 243-268.
  11. Hudson, J. A., Brown, E. T. and Rummel, F. (1972). "The controlled failure of rock discs and rings loaded in diametral compression." Int. J. Rock Mech Min, Vol. 9, pp. 241-248. https://doi.org/10.1016/0148-9062(72)90025-3
  12. Hudson, W. R. and Thomas W. K. (1968). "An indirect tensile test for stabilized materials, Research Report No. 98-1." Center for Highway Research, The University of Texas at Austin.
  13. ISRM (1979). "Suggested methods for determining the uniaxial compressive strength and deformability of rock materials." Int. J. Rock Mech. and Min. Sci. & Geomech. Abstr, Vol. 16, No. 2, pp. 135-140.
  14. Kim, Y. C., Shin, J. W. and Son, S. M. (2009). "An experimental study of the king sejong station and siberian frozen soils." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 10, No. 2, pp. 5-12 (in Korean).
  15. KS F 2405 (2010). "Standard test method for compressive strength of concrete." Korean Industrial Standards (in Korean).
  16. Lee, K. R. and Kim, J. W. (1995). "A study on tensile strength of rock by ring test." J. Ind. Sci., Chongju Univ, Vol. 13 (in Korean).
  17. Obert, L. and Duvall, W. I. (1967). Rock mechanics and the design of structures in rock, John Wiley and Sons, New York, pp. 94-98.
  18. Park, S. K. (1997). "Investigation of the correlation between the compressive and the tensile strength of concrete." J. Ind, Sci., Seonggyungwan Univ, Vol. 48, No. 1 (in Korean).
  19. Patent No. 10-1327018 (2013). "Tension test apparatus having tension test device and method for tension test." (in Korean).
  20. Slate, F. O., Nilson, A. H. and Martinez, S. (1986). "Mechanical properties of high-strength lightweight concrete." ACI Journal, Vol. 83, No. 4, pp. 606-613.
  21. Spencer, E. (1968). "Effect of tension of stability of embankment. Journal of the Soil Mechanics and Foundation Division." ASCE, Vol. 94, No. SM5, pp. 1159-1173.
  22. Suklje, L. (1969). "Rheological aspects of soil mechanics." Wiley Interscience, pp. 456-473.
  23. Zhang, M. H. and Gjorv, O. E. (1991). "Mechanical properties of high-strength lightweight concrete." ACI Materials Journal, Vol. 88, No. 3, pp. 240-247.

Cited by

  1. Engineering Characteristics of Bio-cemented Soil Mixed with PVA Fiber vol.32, pp.8, 2016, https://doi.org/10.7843/kgs.2016.32.8.27
  2. Properties of biocemented, fiber reinforced sand vol.120, 2016, https://doi.org/10.1016/j.conbuildmat.2016.05.124
  3. Tensile Strength Characteristics of Cement Paste Mixed with Fibers vol.31, pp.3, 2015, https://doi.org/10.7843/kgs.2015.31.3.5