DOI QR코드

DOI QR Code

Size Dependent Analysis of Phytoplankton Community Structure during Low Water Temperature Periods in the Coastal Waters of East Sea, Korea

저수온기 동해연안의 식물플랑크톤 크기에 따른 군집구조

  • Lee, Juyun (Marine Ecosystem Research Division, Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Chang, Man (Marine Ecosystem Research Division, Korea Institute of Ocean Science and Technology (KIOST))
  • 이주연 (한국해양과학기술원 해양생태계연구부) ;
  • 장만 (한국해양과학기술원 해양생태계연구부)
  • Received : 2014.05.12
  • Accepted : 2014.07.16
  • Published : 2014.09.30

Abstract

In order to understand the phytoplankton community structure based on their cell size duringlow water temperature periods, we studied 10 stations in the East Sea, Korea on March, 2012. The minimum standing crops of total phytoplankton were $3.4{\times}10^6cells\;L^{-1}$ at the station 5. The maximum values were $7.6{\times}10^6cells\;L^{-1}$ at the station 8, which is two times the amount of the minimum. The carbon mass at the station 4 ($6.3{\times}10^8pg\;L^{-1}$) was more than forty times higher compared with station 5 ($0.08{\times}10^8pg\;L^{-1}$). From these results, we found a significant difference between standing crops and carbon mass which might have caused due to their differences in community structure and cell size. Therefore, we considered the types of plankton biomass to estimate the primary product in the specific location and/or time. The phytoplankton communities were classified in 3 types: microplankton (> $20{\mu}m$), nanoplankton (< $20{\mu}m$) and picoplankton (< $2{\mu}m$). In the case of picoplankton, various morphological types were observed during the study period. These various picoplankton species were further classified as S (spherical), SF (spherical&flagella), O (oval), OF (oval&flagella) or R (rod) type, and we analyzed their community structure based on these categories. The picoplankton was found to be the most dominant type at 8 stations and S type as the most popular. The picoplankton seems to be the significant organism in the marine ecology during low water temperature periods in the coastal waters of East Sea. Therefore, picoplankton \;-with scientific surveys can be considered as the database for their identification. In conclusion, we suggest that cell size of the phytoplankton would be the best criteria to accurately analyze their community structure and to reveal groups having more ecological influence.

본 연구는 2012년 3월 저수온기 동해연안의 10개 정점에서 식물플랑크톤의 군집구조를 세포의 크기에 따라 구분하여 조사하였다. 식물플랑크톤의 총 개체수는 $3.4{\times}10^6{\sim}7.6{\times}10^6cells\;L^{-1}$, 탄소량은 $0.0^8{\times}10^8{\sim}6.3{\times}10^8pg\;L^{-1}$로 나타났다. 개체수를 기반으로 생물량을 보았을 때, 극미소플랑크톤의 비율이 미세 미소 플랑크톤보다 높았다. 그러나 탄소량을 기반으로 하는 생물량을 보았을 때, 극미소플랑크톤은 세포 크기가 작아 기여도가 미미하였고, Coscinodiscus속과 같이 크기가 큰 종들은 기여도가 높았다. 이와 같이 식물플랑크톤의 생물량을 정확하게 파악하기 위해서는 다양한 관점으로 여러 항목을 조사할 필요성이 있는 것으로 나타났다. 식물플랑크톤의 군집 구조를 확인한 결과, 총 10개 정점 중에 8 정점에서 극미소플랑크톤이 우점하였다. 또한 8개 정점에서 미소플랑크톤의 개체수가 미세플랑크톤보다 높은 비율을 나타냈다. 미세 미소플랑크톤 중에서는 규조류의 비율이 95% 이상이었다. 극미소플랑크톤의 군집구조를 살펴보면, 5가지의 형태학적 특성이 다른 군집이 확인되었으며, 7개 정점에서 S type이 가장 우점한 것으로 나타났다. 본 연구를 통해 확인된 극미소플랑크톤이 차지하는 생태학적 기여도가 커 이들에 대한 연구가 꾸준히 수행되어야 하며, 이를 위하여 그들의 분류학적 체계 구축과 생리학적 특성 연구가 선행되어야 할 것으로 판단된다. 이와 같은 연구를 기반으로 향후, 변화하고 있는 동해연안에서 생물 군집 변화 현상을 규명할 수 있을 것이다.

Keywords

References

  1. Brand LE. 1984. The salinity tolerance of forty-six marine phytoplankton isolates. Estuar. Coast. Shelf Sci. 18:543-556. https://doi.org/10.1016/0272-7714(84)90089-1
  2. Casey JR, JP Aucan, SR Goldberg and MW Lomas. 2013. Changes in partitioning of carbon amongst photosynthetic picoand nano-plankton groups in the Sargasso Sea in response to changes in the North Atlantic Oscillation. Deep-Sea Res. II. 93:58-70. https://doi.org/10.1016/j.dsr2.2013.02.002
  3. Chung IK and YH Kang. 1996. The ultrastructure of the Chlorococcalean picoplankton isolated from the western channel of the Korea Strait. J. Korean Soc. Oceanogr. 30:529-536.
  4. Dodge JD. 1982. Marine dinoflagellates of the British Isles. pp. 303. Her majesty's stationery office.
  5. Ichiye T. 1984. Some problem of circulation and hydrography of the Japan Sea and Tsushima Current. pp.15-54. In Ocean hydrography of the Japan Sea and China Seas (Ichiye T ed.). Elsevier Sci. Publishers. Amsterdam.
  6. Jo EY, JH Cha, MK Kim and KT Kim. 2000. Studies on the ecosystem in the Young-Il Gulf of Korea: 1. Species composition and diversity of phytoplankton communities. Algae 15:49-59.
  7. Johnson PW and JMN Sieburth. 1979. Chroococciod cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol. Ocenogr. 24:928-935. https://doi.org/10.4319/lo.1979.24.5.0928
  8. Jun KO and CK Park. 1969. Studies on the chlorophyll in East sea of Korea. Bull. Fish. Res. Dev. Agency 4:27-43.
  9. Jung SJ, OY Kwon and JH Lee. 2008. Variation and relationship between standing crops and biomass of phytoplankton dominant species in the marine ranching ground of Tongyeong coastal waters from 2000 to 2007. Algae 23:53-61. https://doi.org/10.4490/ALGAE.2008.23.1.053
  10. Kang YS, HC Choi, JH Lim, IS Jeon and JH Seo. 2005. Dynamics of the phytoplankton community in the coastal waters of Chuksan Harbor, East Sea. Algae 20:345-352. https://doi.org/10.4490/ALGAE.2005.20.4.345
  11. Kovala PE and JD Larrance. 1966. Computation of phytoplankton cell numbers, cell volume, cell surface and plasma volume per liter, from microscopical counts. Special Report No. 38 of university of Washington department of Oceanography.
  12. Lee JY and MS Han. 2007. Change of blooming pattern and population dynamics of phytoplankton in Masan bay, Korea. J. Korean Soc. Oeanogr. 12:147-158.
  13. Lee WJ. 2007. Temporal distribution of pico- and nanoplankton at a station in Okkye bay. J. Environ. Sci. 16:855-863.
  14. Legendre L and F Rassoulzadegan. 1996. Food-web mediated export of biogenic carbon in oceans hydro-dynamics control. Mar. Eco. Pro. Ser. 145:179-193. https://doi.org/10.3354/meps145179
  15. Noh JH, SJ Yoo, JA Lee, HC Kim and JH Lee. 2005. Phytoplankton in the waters of the Ieodo ocean research station determined by microscope, Flow Cytometry, HPLC pigment data and remote sensing. Ocean Polar Res. 27:397-417. https://doi.org/10.4217/OPR.2005.27.4.397
  16. Noh JH, SJ Yoo and SH Kang. 2006. The summer distribution of picophytoplankton in the Western Pacific. Korean J. Environ. Biol. 24:67-80.
  17. Pan LA, J Zhang, Q Chen and B Deng. 2006. Picoplankton community structure at a coastal front region in the northern part of the South China Sea. J. Plankton Res. 28:337-343. https://doi.org/10.1093/plankt/fbi117
  18. Parke M and J Dixon. 1968. Check list of British marine algae - Second revision. J. Mar. Biol. Assoc. U.K. 45:537-557.
  19. Partensky F, J Blanchot and D Vaulot. 1999. Differential distribution of Prochlrococcus and Synechococcus in oceanic waters: a review. In Marine cyanobacteria (Charpy L and WD Larkum eds.). Bull. Institut. Oceanogr. Monaco 19:457-475.
  20. Raymont JEG. 1980. Plankton and productivity in the oceans 2nd Ed. volume 1 Phytoplankton. Pergamon Press. 489pp.
  21. Sherr EB, DA Caron and BF Sherr. 1993. Staining of heterotrophic protists for visualization via epifluorescence microscopy. pp.213-227. In Aquatic Microbial Ecol (Kemp PF, BF Sherr, EB Sherr and JJ Cole eds.). Lewis. Boca Raton.
  22. Shim JM, SH Yun, JD Hwang, HG Jin, YH Lee, YS Kim and SC Yun. 2008. Seasonal variability of picoplankton around Ulneung Island. J. Environ. Sci. Int. 17:1243-1253. https://doi.org/10.5322/JES.2008.17.11.1243
  23. Sieburth JMN, V Smetacek and J Lenz. 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23:1256-1263. https://doi.org/10.4319/lo.1978.23.6.1256
  24. Simonsen R. 1979. The diatom system: Ideas on phylogeny. Bacilaria. 2:9-71.
  25. Stockner JG. 1988. Phototrophic picoplankton: an overview from marine and freshwater eco-systems. Limonol. Oceanogr. 33:765-775. https://doi.org/10.4319/lo.1988.33.4_part_2.0765
  26. Vanucci S and O Mangoni. 1999. Pico and nano phytoplankton assemblages in a subantarctic ecosystem in the Strait of Magellan. Bota. Mari. 42:563-572.
  27. Waterbury JB, SW Watson, RRL Guillard and LE Brand. 1979. Widespread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature 227:293-294.
  28. Yang HS and SS Kim. 1990. A study on sea water and ocean current in the sea adjacent to Korea Peninsula. 1. Physical processes influencing the surface distributions of chlorophyll and nutrient in the southern sea of Korea in summer. Bull. Korean Fish. Soc. 23:417-424.
  29. Yoo SJ and HC Kim. 2011. Primary productivity of the East sea. pp.105-121. In The Plankton Ecology of Korean coastal waters (Choi JK ed.). DongHwa Technology Publishing Co. Seoul.
  30. Zubkov MV, MA Sleigh, PH Burkill and RJG Leakey. 2000. Picoplankton community structure on the Atlantic Meridional Transect: a comparison between seasons. Prog. Oceanogr. 45:369-386. https://doi.org/10.1016/S0079-6611(00)00008-2