DOI QR코드

DOI QR Code

A Tool Box to Evaluate the Phased Array Coil Performance Using Retrospective 3D Coil Modeling

3차원 코일 모델링을 통해 위상배열코일 성능을 평가하기 위한 프로그램

  • Perez, Marlon (Department of Biomedical Engineering, Kyung Hee University) ;
  • Hernandez, Daniel (Department of Biomedical Engineering, Kyung Hee University) ;
  • Michel, Eric (Department of Biomedical Engineering, Kyung Hee University) ;
  • Cho, Min Hyoung (Department of Biomedical Engineering, Kyung Hee University) ;
  • Lee, Soo Yeol (Department of Biomedical Engineering, Kyung Hee University)
  • ;
  • ;
  • ;
  • 조민형 (경희대학교 생체의공학과) ;
  • 이수열 (경희대학교 생체의공학과)
  • Received : 2014.05.01
  • Accepted : 2014.06.19
  • Published : 2014.06.30

Abstract

Purpose : To efficiently evaluate phased array coil performance using a software tool box with which we can make visual comparison of the sensitivity of every coil element between the real experiment and EM simulation. Materials and Methods: We have developed a $C^{{+}{+}}$- and MATLAB-based software tool called Phased Array Coil Evaluator (PACE). PACE has the following functions: Building 3D models of the coil elements, importing the FDTD simulation results, and visualizing the coil sensitivity of each coil element on the ordinary Cartesian coordinate and the relative coil position coordinate. To build a 3D model of the phased array coil, we used an electromagnetic 3D tracker in a stylus form. After making the 3D model, we imported the 3D model into the FDTD electromagnetic field simulation tool. Results: An accurate comparison between the coil sensitivity simulation and real experiment on the tool box platform has been made through fine matching of the simulation and real experiment with aids of the 3D tracker. In the simulation and experiment, we used a 36-channel helmet-style phased array coil. At the 3D MRI data acquisition using the spoiled gradient echo sequence, we used the uniform cylindrical phantom that had the same geometry as the one in the FDTD simulation. In the tool box, we can conveniently choose the coil element of interest and we can compare the coil sensitivities element-by-element of the phased array coil. Conclusion: We expect the tool box can be greatly used for developing phased array coils of new geometry or for periodic maintenance of phased array coils in a more accurate and consistent manner.

목적: 실제 촬영 결과와 전자기 모의실험 결과를 시각적으로 비교함으로써 위상배열코일을 이루는 모든 코일 요소의 감도를 효과적으로 검증할 수 있는 소프트웨어를 개발하였다. 대상과 방법: 위상배열코일검증기(PACE)라 불리는 프로그램을 MATLAB과 C언어를 이용해 구현하였다. 위상배열 코일검증기는 코일 소자의 3차원 형상 모델 구축, FDTD 모의실험 결과의 수용, 보통의 직각좌표계 및 코일면에 기준하는 직각좌표계 상에서 각기 코일 소자 감도를 도시하는 기능을 가지고 있다. 위상배열코일의 3차원 형상 모델을 구축하기 위해 바늘침 모양의 3차원 전자기 위치추적기를 사용하였다. 3차원 형상 모델을 만든 뒤, 이 형상 모델 데이터를 FDTD 모의실험 장치에 보낼 수 있게 하였다. 결과: 3차원 전자기 위치추적기를 이용해 실제 실험에 사용된 위상배열코일과 FDTD 모의실험에 사용된 위상배열코일 모델을 정확하게 일치시킴으로써, 각기 코일 소자의 공간적 감도를 평가할 때 모의실험 결과와 촬영실험 결과 사이 정확한 비교가 가능하게 되었다. 모의실험과 실제 촬영실험에는 36 채널의 헬멧형 위상배열코일을 사용하였다. MRI 촬영 대상체로는 FDTD 모의실험의 모델과 같은 크기와 형상을 가진 원통형 팬텀을 사용하였다. 개발한 프로그램에서는 위상배열코일의 성능을 편리하게 평가하기 위해 관심 코일 소자를 쉽게 선택할 수 있게 하였다. 결론: 개발한 위상배열코일 성능 검증 프로그램은 위상배열코일의 개발 및 정기적인 유지보수에 사용될 수 있을 것으로 기대한다.

Keywords

References

  1. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225 https://doi.org/10.1002/mrm.1910160203
  2. Lee RF, Giaquinto RO, Hardy CJ. Coupling and decoupling theory and its application to the MRI phased array. Magn Reson Med 2002;48:203-213 https://doi.org/10.1002/mrm.10186
  3. Keil B, Wald LL. Massively parallel MRI detector arrays. J Magn Reson 2013;229:75-89 https://doi.org/10.1016/j.jmr.2013.02.001
  4. Wong EY, Hillenbrand CM, Lewin JS, Duerk JL. Computer simulations for optimization of design parameters for intravascular imaging microcoil construction. Proc Intl Soc Mag Reson Med 2003;11:2386
  5. Constantinides C, Angeli S, Gkagkarellis S, Cofer G. Intercomparison of performance of RF coil geometries for high field mouse cardiac MRI. Concepts Magn Reson Part A. 2011;38A;236-252
  6. Hernandez D, Perez M, Lee SY. A bi-planar surface coil for parietal lobe imaging. Proc Intl Soc Mag Reson Med 2013;21:2793
  7. Kim DE, Park YM, Perez M, Hernandez D, Lee JH, Lee SY. Retrospective 3D modeling of RF coils using a 3D tracker for EM simulation. Concepts Magn Reson Part B 2013;43:126-132 https://doi.org/10.1002/cmr.b.21245
  8. Wiggins GC, Triantafyllou C, Potthast A, Reykowski A, Nittka M, Wald LL. 32-channel 3 tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 2006;56:216-223 https://doi.org/10.1002/mrm.20925
  9. Lattanzi R, Grant AK, Polimeni JR, et al. Performance evaluation of a 32-element head array with respect to the ultimate intrinsic SNR. NMR Biomed 2010;23:142-151
  10. Hoult DI. The principle of reciprocity in signal strength calculations- A mathematical guide. Concepts Magn Reson Part A 2000;12:173-187 https://doi.org/10.1002/1099-0534(2000)12:4<173::AID-CMR1>3.0.CO;2-Q
  11. Hartwig V, Tassano S, Mattii A, et al. Computational analysis of a radiofrequency knee coil for low-field MRI using FDTD. Applied Magn Reson 2013;44:389-400 https://doi.org/10.1007/s00723-012-0388-8
  12. Darrasse L, Kassab G. Quick measurement of NMR-coil sensitivity with a dual-loop probe. Review Scientific Instruments 1993;64:1841-1844 https://doi.org/10.1063/1.1144020
  13. SEMCAD X MRI. Web site. http://www.speag.com/.
  14. Griswold MA, Jakob PM, Nittka M, Goldfarb JW, Haase A. Partially parallel imaging with localized sensitivities (PILS). Magn Reson Med 2000;44:602-609 https://doi.org/10.1002/1522-2594(200010)44:4<602::AID-MRM14>3.0.CO;2-5
  15. Seiberlich N, Griswold M. Parallel imaging in angiography. Magnetic Resonance Angiography. Springer, 2012:188

Cited by

  1. A Review on the RF Coil Designs and Trends for Ultra High Field Magnetic Resonance Imaging vol.24, pp.3, 2014, https://doi.org/10.13104/imri.2020.24.3.95
  2. A Review on the RF Coil Designs and Trends for Ultra High Field Magnetic Resonance Imaging vol.24, pp.3, 2014, https://doi.org/10.13104/imri.2020.24.3.95