Neuroprotective Activity of Phytosterols Isolated from Artemisia apiacea

청호의 Phytosterol 성분 분리 및 뇌세포 보호 활성

  • Lee, Jiwoo (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University) ;
  • Weon, Jin Bae (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University) ;
  • Ma, Choong Je (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University)
  • 이지우 (강원대학교 의생명과학대학 생물의소재공학과) ;
  • 원진배 (강원대학교 의생명과학대학 생물의소재공학과) ;
  • 마충제 (강원대학교 의생명과학대학 생물의소재공학과)
  • Received : 2014.07.11
  • Accepted : 2014.08.27
  • Published : 2014.09.30

Abstract

Artemisia apiacea is a traditional herbal medicine using treatment of eczema and jaundice in Eastern Asia including China, Korea, and Japan. In this study, the three phytosterol constituents were isolated and identified from the hexane fraction of 80% aqueous methanol extract of A. apiacea. Compounds were isolated using open column chromatography (silica gel). Their chemical structures were also established using $^1H$-NMR and $^{13}C$-NMR. Moreover, neuroprotective activity of each compound against glutamate-induced neurotoxicity in hippocampal HT-22 cell line was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, Inhibition of reactive oxygen species (ROS) and calcium ion ($Ca^{2+}$) accumulation were measured for elucidation of neuroprotective mechanism of isolated compounds. They showed that stigmasterol had neuroprotective activity against the glutamate-induced toxicity by inhibition of ROS and $Ca^{2+}$ production. In conclusion, isolated compound of A. apiacea might be useful for therapeutic agent against neurodegenerative diseases.

Keywords

References

  1. Christen, Y. (2000) Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr. 71: 621S-629S. https://doi.org/10.1093/ajcn/71.2.621s
  2. Halliwell, B. (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs & Aging 18: 685-716.
  3. Emerit, J., Edeas, M. and Bricaire, F. (2004) Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother. 58: 39-46. https://doi.org/10.1016/j.biopha.2003.11.004
  4. Choi, D. W. (1992) Excitotoxic cell death. J. Neurochem. 23: 1261-1276.
  5. Jin, D. Q., Lim, C. S., Hwang, J. K., Ha, I. and Han, J. S. (2005) Anti-oxidant and anti-inflammatory activities of macelignan in murine hippocampal cell line and primary culture of rat microglial cells. Biochem. Biophys. Res. Commun. 331: 1264-1269. https://doi.org/10.1016/j.bbrc.2005.04.036
  6. Coyle, J. T. and Puttfarcken, P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689-695. https://doi.org/10.1126/science.7901908
  7. Tan, S., Wood, M. and Maher, P. (1998) Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J. Neurochem. 71: 95-105.
  8. Jiang, W. Y. (2005) Therapeutic wisdom in traditional Chinese medicine: a perspective from modern science. Trends Pharmacol. Sci. 26: 558-563. https://doi.org/10.1016/j.tips.2005.09.006
  9. Bent, S. (2008) Herbal medicine in the United States: review of efficacy, safety, and regulation. J. Gen. Intern. Med. 23: 854-859. https://doi.org/10.1007/s11606-008-0632-y
  10. Fabio, F. and Luigi, G. (2007) Herbal medicine today: clinical and research issues. Evid. Based Complement. Alternat. Med. 4: 37-40. https://doi.org/10.1093/ecam/nem096
  11. Yook, C. S. (1989) Coloured medicinal plants of Korea. 522. Printed by academy, Seoul.
  12. Kim, O. C. and Jang, H. J. (1994) Volatile components of Artemisia apiacea herba. Agr. Chem. Biotechnol. 37: 37-42.
  13. Tan, R. X., Zheng, W. F. and Tang, H. Q. (1998) Biologically active substances from the genus Artemisia. Planta Med. 64: 295-302. https://doi.org/10.1055/s-2006-957438
  14. Hsu, E. (2006) Reflections on the 'discovery' of the antimalarial qinghao. Br. J. Clin. Pharmacol. 61: 666-670. https://doi.org/10.1111/j.1365-2125.2006.02673.x
  15. Kim, K. S., Shim, S. H., Jang, J. M., Cheong, J. H. and Kim, B. K. (1999) A study on hair-growth activity of Artemisia apiacea Hance. J. Pharm. Soc. Korea 43: 798-801.
  16. Kim, K. S., Lee, S., Lee, Y. S., Jung, S. H., Park, Y., Shin, K. H. and Kim, B.-K. (2003) Anti-oxidant activities of the extracts from the herbs of Artemisia apiacea. J. Ethnopharmacol. 85: 69-72. https://doi.org/10.1016/S0378-8741(02)00338-0
  17. Shimomura, H., Sashida, Y. and Ohshima, Y. (1979) Coumarins from Artemisia apiacea. Phytochem. 18: 1761-1762. https://doi.org/10.1016/0031-9422(79)80212-5
  18. Shimomura, H., Sashida, Y. and Ohshima, Y. (1980a) The chemical components of Artemisia apiacea Hance, more coumarins from the flower heads. Chem. Pharm. Bull. 28: 347-348. https://doi.org/10.1248/cpb.28.347
  19. Shimomura, H., Sashida, Y., Ohshima, Y., Azuma, T. and Saitoh, M. (1980b) The chemical components of Artemisia apiacea Hance, components of stems and leaves. Yakugaku Zasshi 100: 1164-1166. https://doi.org/10.1248/yakushi1947.100.11_1164
  20. Yano, K. (1970) Mono- and sesqui-terpenes of the essential oils from Artemisia japonica and Artemisia apiacea. Flavour Ind. 1: 328-330.
  21. Lee, S., Kim, K. S., Jang, J. M., Park, Y., Kim, Y. B. and Kim, B.-K. (2002) Phytochemical constituents from the herba of Artemisia apiacea. Arch. Pharm. Res. 25: 285-288. https://doi.org/10.1007/BF02976627
  22. Lee, S., Kim, K. S., Shim, S. H., Park, Y. M. and Kim, B.-K. (2003) Constituents from the non-polar fraction of Artemisia apiacea. Arch. Pharm. Res. 26: 902-905. https://doi.org/10.1007/BF02980197
  23. Lee, S.-J., Kim, H. M., Lee, J. M., Park, H. S. and Lee, S. (2008) Artemisterol, a new steryl ester from the whole plant of Artemisia apiacea. J. Asian Nat. Prod. Res. 10: 281-283. https://doi.org/10.1080/10286020701782486
  24. Chaturvedula, V. S. P. and Prakash, I. (2012) Isolation of stigmasterol and $\beta$-sitosterol from the dichloromethane extract of Rubus suavissimus. Int. Curr. Pharm. J. 1: 239-242.
  25. Rajput, A. P. and Rajput, T. A. (2012) Isolation of stigmasterol and $\beta$-sitosterol from chloroform extract of leaves of Corchorus fascicularis Lam. Int. J. Biol. Chem. 6: 130-135. https://doi.org/10.3923/ijbc.2012.130.135
  26. Yoo, J. S., Ahn, E. M., Bang, M. H., Song, M. C., Yang, H. J., Kim, D. H., Lee, D. Y., Chung, H. G., Jeong, T. S., Lee, K. T., Choi, M. S. and Baek, N. I. (2006) Steroids from the aerial parts of Artemisia princeps Pampanini. Korean J. Medicinal Crop. Sci. 14: 273-277.
  27. Jain, P. S. and Bari, S. B. (2010) Isolation of lupeol, stigmasterol and campesterol from petroleum ether extract of woody stem of Wrightia tinctoria. Asian J. Plant Sci. 9: 163-167. https://doi.org/10.3923/ajps.2010.163.167
  28. Lee, J. H., Kim, D. H., Bang, M. H., Yang, H. J., Bang, S. H., Chung, I. S., Kwon, B. M., Kim, S. H., Kim, D. K., Park, M. H. and Baek, N. I. (2005) Isolation of sterols from the methanol extracts of Cymbidium goeringii REICHB. fil. J. Korean Soc. Appl. Biol. Chem. 48: 263-266.
  29. Brimson, J. M., Brimson, S. J., Brimson, C. A., Rakkhitawatthana, V. and Tencomnao, T. (2012) Rhinacanthus nasutus extracts prevent glutamate and amyloid-$\beta$ neurotoxicity in HT-22 mouse hippocampal cells: possible active compounds include lupeol, stigmasterol and $\beta$-sitosterol. Int. J. Mol. Sci. 13: 5074-5097. https://doi.org/10.3390/ijms13045074
  30. Huang, X., Atwood, C. S., Hartshorn, M. A., Multhaup, G., Goldstein, L. E., Scarpa, R. C., Cuajungco, M. P., Gray, D. N., Lim, J., Moir, R. D., Tanzi, R. E. and Bush, A. I. (1999) The A$\beta$ peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochem. 38: 7609-7616. https://doi.org/10.1021/bi990438f
  31. Ha, J. S. and Park, S. S. (2006) Glutamate-induced oxidative stress, but not cell death, is largely dependent upon extracellular calcium in mouse neuronal HT22 cells. Neurosci. Lett. 393: 165-169. https://doi.org/10.1016/j.neulet.2005.09.056