DOI QR코드

DOI QR Code

Safe Sedation and Hypnosis using Dexmedetomidine for Minimally Invasive Spine Surgery in a Prone Position

  • Kim, Kyung Hoon (Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University)
  • Received : 2014.08.20
  • Accepted : 2014.08.26
  • Published : 2014.10.01

Abstract

Dexmedetomidine, an imidazoline compound, is a highly selective ${\alpha}_2$-adrenoceptor agonist with sympatholytic, sedative, amnestic, and analgesic properties. In order to minimize the patients' pain and anxiety during minimally invasive spine surgery (MISS) when compared to conventional surgery under general anesthesia, an adequate conscious sedation (CS) or monitored anesthetic care (MAC) should be provided. Commonly used intravenous sedatives and hypnotics, such as midazolam and propofol, are not suitable for operations in a prone position due to undesired respiratory depression. Dexmedetomidine converges on an endogenous non-rapid eye movement (NREM) sleep-promoting pathway to exert its sedative effects. The great merit of dexmedetomidine for CS or MAC is the ability of the operator to recognize nerve damage during percutaneous endoscopic lumbar discectomy, a representative MISS. However, there are 2 shortcomings for dexmedetomidine in MISS: hypotension/bradycardia and delayed emergence. Its hypotension/bradycardiac effects can be prevented by ketamine intraoperatively. Using atipamezole (an ${\alpha}_2$-adrenoceptor antagonist) might allow doctors to control the rate of recovery from procedural sedation in the future. MAC, with other analgesics such as ketorolac and opioids, creates ideal conditions for MISS. In conclusion, dexmedetomidine provides a favorable surgical condition in patients receiving MISS in a prone position due to its unique properties of conscious sedation followed by unconscious hypnosis with analgesia. However, no respiratory depression occurs based on the dexmedetomidine-related endogenous sleep pathways involves the inhibition of the locus coeruleus in the pons, which facilitates VLPO firing in the anterior hypothalamus.

Keywords

References

  1. Newman-Tancredi A, Nicolas JP, Audinot V, Gavaudan S, Verriele L, Touzard M, et al. Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol 1998; 358: 197-206. https://doi.org/10.1007/PL00005243
  2. Gertler R, Brown HC, Mitchell DH, Silvius EN. Dexmedetomidine: a novel sedative-analgesic agent. Proc (Bayl Univ Med Cent) 2001; 14: 13-21. https://doi.org/10.1080/08998280.2001.11927725
  3. Chrysostomou C, Schmitt CG. Dexmedetomidine: sedation, analgesia and beyond. Expert Opin Drug Metab Toxicol 2008; 4: 619-27. https://doi.org/10.1517/17425255.4.5.619
  4. Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, et al. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 1994; 46: 121-36.
  5. Insel PA. Seminars in medicine of the Beth Israel Hospital, Boston. Adrenergic receptors--evolving concepts and clinical implications. N Engl J Med 1996; 334: 580-5. https://doi.org/10.1056/NEJM199602293340907
  6. Haselman MA. Dexmedetomidine: a useful adjunct to consider in some high-risk situations. AANA J 2008; 76: 335-9.
  7. Correa-Sales C, Rabin BC, Maze M. A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology 1992; 76: 948-52. https://doi.org/10.1097/00000542-199206000-00013
  8. Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 2003; 98: 428-36. https://doi.org/10.1097/00000542-200302000-00024
  9. Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci 2002; 5: 979-84. https://doi.org/10.1038/nn913
  10. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437: 1257-63. https://doi.org/10.1038/nature04284
  11. Huupponen E, Maksimow A, Lapinlampi P, Sarkela M, Saastamoinen A, Snapir A, et al. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand 2008; 52: 289-94. https://doi.org/10.1111/j.1399-6576.2007.01537.x
  12. Khan ZP, Ferguson CN, Jones RM. alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia 1999; 54: 146-65. https://doi.org/10.1046/j.1365-2044.1999.00659.x
  13. Hsu YW, Cortinez LI, Robertson KM, Keifer JC, Sum-Ping ST, Moretti EW, et al. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology 2004; 101: 1066-76. https://doi.org/10.1097/00000542-200411000-00005
  14. Guo TZ, Jiang JY, Buttermann AE, Maze M. Dexmedetomidine injection into the locus ceruleus produces antinociception. Anesthesiology 1996; 84: 873-81. https://doi.org/10.1097/00000542-199604000-00015
  15. Li SS, Zhang WS, Ji D, Zhou YL, Li H, Yang JL, et al. Involvement of spinal microglia and interleukin-18 in the anti-nociceptive effect of dexmedetomidine in rats subjected to CCI. Neurosci Lett 2014; 560: 21-5. https://doi.org/10.1016/j.neulet.2013.12.012
  16. Funai Y, Pickering AE, Uta D, Nishikawa K, Mori T, Asada A, et al. Systemic dexmedetomidine augments inhibitory synaptic transmission in the superficial dorsal horn through activation of descending noradrenergic control: an in vivo patch-clamp analysis of analgesic mechanisms. Pain 2014; 155: 617-28. https://doi.org/10.1016/j.pain.2013.12.018
  17. Fan QQ, Li L, Wang WT, Yang X, Suo ZW, Hu XD. Activation of ${\alpha}$2 adrenoceptors inhibited NMDA receptor-mediated nociceptive transmission in spinal dorsal horn of mice with inflammatory pain. Neuropharmacology 2014; 77: 185-92. https://doi.org/10.1016/j.neuropharm.2013.09.024
  18. Seyrek M, Halici Z, Yildiz O, Ulusoy HB. Interaction between dexmedetomidine and ${\alpha}$-adrenergic receptors: emphasis on vascular actions. J Cardiothorac Vasc Anesth 2011; 25: 856-62. https://doi.org/10.1053/j.jvca.2011.06.006
  19. Bloor BC, Ward DS, Belleville JP, Maze M. Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology 1992; 77: 1134-42. https://doi.org/10.1097/00000542-199212000-00014
  20. Sulaiman S, Karthekeyan RB, Vakamudi M, Sundar AS, Ravullapalli H, Gandham R. The effects of dexmedetomidine on attenuation of stress response to endotracheal intubation in patients undergoing elective off-pump coronary artery bypass grafting. Ann Card Anaesth 2012; 15: 39-43. https://doi.org/10.4103/0971-9784.91480
  21. Kallio A, Scheinin M, Koulu M, Ponkilainen R, Ruskoaho H, Viinamaki O, et al. Effects of dexmedetomidine, a selective alpha 2-adrenoceptor agonist, on hemodynamic control mechanisms. Clin Pharmacol Ther 1989; 46: 33-42. https://doi.org/10.1038/clpt.1989.103
  22. Shukry M, Miller JA. Update on dexmedetomidine: use in nonintubated patients requiring sedation for surgical procedures. Ther Clin Risk Manag 2010; 6: 111-21.
  23. Carollo DS, Nossaman BD, Ramadhyani U. Dexmedetomidine: a review of clinical applications. Curr Opin Anaesthesiol 2008; 21: 457-61. https://doi.org/10.1097/ACO.0b013e328305e3ef
  24. Gerlach AT, Dasta JF. Dexmedetomidine: an updated review. Ann Pharmacother 2007; 41: 245-52. https://doi.org/10.1345/aph.1H314
  25. Tobias JD. Dexmedetomidine and ketamine: an effective alternative for procedural sedation? Pediatr Crit Care Med 2012; 13: 423-7. https://doi.org/10.1097/PCC.0b013e318238b81c
  26. Pomarol-Clotet E, Honey GD, Murray GK, Corlett PR, Absalom AR, Lee M, et al. Psychological effects of ketamine in healthy volunteers. Phenomenological study. Br J Psychiatry 2006; 189: 173-9. https://doi.org/10.1192/bjp.bp.105.015263
  27. Kim KH. Use of lidocaine patch for percutaneous endoscopic lumbar discectomy. Korean J Pain 2011; 24: 74-80. https://doi.org/10.3344/kjp.2011.24.2.74
  28. Triltsch AE, Welte M, von Homeyer P, Grosse J, Genahr A, Moshirzadeh M, et al. Bispectral index-guided sedation with dexmedetomidine in intensive care: a prospective, randomized, double blind, placebo-controlled phase II study. Crit Care Med 2002; 30: 1007-14. https://doi.org/10.1097/00003246-200205000-00009
  29. Johansen JW. Update on bispectral index monitoring. Best Pract Res Clin Anaesthesiol 2006; 20: 81-99.
  30. Kasuya Y, Govinda R, Rauch S, Mascha EJ, Sessler DI, Turan A. The correlation between bispectral index and observational sedation scale in volunteers sedated with dexmedetomidine and propofol. Anesth Analg 2009; 109: 1811-5. https://doi.org/10.1213/ANE.0b013e3181c04e58

Cited by

  1. Combined Use of Intrathecal Opioids and Dexmedetomidine in the Management of Neuropathic Pain vol.28, pp.2, 2015, https://doi.org/10.3344/kjp.2015.28.2.156
  2. Dexmedetomidine versus midazolam for sedation during endoscopy: A meta-analysis vol.11, pp.6, 2016, https://doi.org/10.3892/etm.2016.3186
  3. Dexamethasone or Dexmedetomidine as Local Anesthetic Adjuvants for Ultrasound-guided Axillary Brachial Plexus Blocks with Nerve Stimulation vol.29, pp.1, 2016, https://doi.org/10.3344/kjp.2016.29.1.29
  4. Comparison of remifentanil with dexmedetomidine for monitored anaesthesia care in elderly patients during vertebroplasty and kyphoplasty vol.44, pp.2, 2016, https://doi.org/10.1177/0300060515607385
  5. The Effects of Dexmedetomidine Administration on Postoperative Blood Glucose Levels in Diabetes Mellitus Patients Undergoing Spinal Anesthesia: A Pilot Study vol.6, pp.6, 2016, https://doi.org/10.5812/aapm.40483
  6. Earlier treatment improves the chances of complete relief from postherpetic neuralgia vol.30, pp.3, 2017, https://doi.org/10.3344/kjp.2017.30.3.214
  7. Incidence of bradycardia in pediatric patients receiving dexmedetomidine anesthesia: a meta-analysis vol.39, pp.1, 2017, https://doi.org/10.1007/s11096-016-0411-5
  8. Posterior percutaneous full-endoscopic cervical discectomy under local anesthesia for cervical radiculopathy due to soft-disc herniation: a preliminary clinical study vol.29, pp.4, 2018, https://doi.org/10.3171/2018.1.SPINE17795
  9. Effect of dexmedetomidine on endotracheal intubating conditions during endotracheal intubation without neuromuscular blocker following propofol/remifentanil vol.12, pp.1, 2014, https://doi.org/10.17085/apm.2017.12.1.56
  10. The Effect of Intravenous Dexmedetomidine Compared to Propofol on Patients Hemodynamics as a Sedative in Brachial Plexus Block: A Comparative Study vol.11, pp.1, 2014, https://doi.org/10.4103/0259-1162.200236
  11. Evaluation of dexmedetomidine as a sole agent in sedation of cancer patients undergoing radiological interventional procedures vol.33, pp.2, 2014, https://doi.org/10.1016/j.egja.2016.12.001
  12. The Effects of Thoracic Epidural Analgesia during Percutaneous Radiofrequency Ablation for Hepatocellular Carcinoma vol.2018, pp.None, 2014, https://doi.org/10.1155/2018/4354912
  13. Virtual Reality Distraction during Endoscopic Urologic Surgery under Spinal Anesthesia: A Randomized Controlled Trial vol.8, pp.1, 2014, https://doi.org/10.3390/jcm8010002
  14. Does an enhanced recovery after surgery protocol change costs and outcomes of single-level lumbar microdiscectomy? vol.46, pp.4, 2014, https://doi.org/10.3171/2019.1.focus18665
  15. Does an enhanced recovery after surgery protocol change costs and outcomes of single-level lumbar microdiscectomy? vol.46, pp.4, 2014, https://doi.org/10.3171/2019.1.focus18665
  16. Design and Implementation of an Enhanced Recovery After Surgery (ERAS) Program for Minimally Invasive Lumbar Decompression Spine Surgery : Initial Experience vol.44, pp.9, 2014, https://doi.org/10.1097/brs.0000000000002905
  17. Analgesia for spinal anesthesia positioning in elderly patients with proximal femoral fractures : Dexmedetomidine-ketamine versus dexmedetomidine-fentanyl vol.99, pp.20, 2020, https://doi.org/10.1097/md.0000000000020001
  18. Dexmedetomidine during suprazygomatic maxillary nerve block for pediatric cleft palate repair, randomized double-blind controlled study vol.33, pp.1, 2014, https://doi.org/10.3344/kjp.2020.33.1.81
  19. Efficacy of adjuvant dexmedetomidine in supraclavicular brachial plexus block for intractable complex regional pain syndrome: A case report with a 3‐year follow‐up vol.45, pp.2, 2014, https://doi.org/10.1111/jcpt.13063
  20. Risk Factor for Additional Intravenous Medication during Transforaminal Full-endoscopic Lumbar Discectomy under Local Anesthesia vol.61, pp.3, 2014, https://doi.org/10.2176/nmc.oa.2020-0275
  21. Perineural Epinephrine for Brachial Plexus Block Increases the Incidence of Hypotension during Dexmedetomidine Infusion: A Single-Center, Randomized, Controlled Trial vol.10, pp.12, 2014, https://doi.org/10.3390/jcm10122579