DOI QR코드

DOI QR Code

Analysis of Flood Level Mitigation due to the Naju Retention-Basin by Numerical Model Application

수치모형 적용을 통한 나주 강변저류지 홍수위 저감효과 분석

  • Rhee, Dong Sop (River and Coastal Research Division, Korea Institute of Construction Technology) ;
  • Kim, Hyung-Jun (River and Coastal Research Division, Korea Institute of Construction Technology) ;
  • Cho, Gilje (River and Coastal Research Division, Korea Institute of Construction Technology)
  • 이동섭 (한국건설기술연구원 하천해안연구실) ;
  • 김형준 (한국건설기술연구원 하천해안연구실) ;
  • 조길제 (한국건설기술연구원 하천해안연구실)
  • Received : 2013.12.04
  • Accepted : 2014.09.11
  • Published : 2014.09.30

Abstract

The retention basin is a hydraulic structure for flood mitigation by storing river flow over a design flood. In this study, numerical models were adopted to simulate the flood mitigation effects by a retention basin. The large flood condition was applied as a boundary condition to consider an abnormal flood caused by climate change. Furthermore, the two-dimensional numerical model was adopted to regenerate the complex flow pattern due to the topography and lateral flow near the retention basin. The numerical results of the one- and two-dimensional model were analyzed and compared. The results showed that the two-dimensional model is more applicable to assessing flood mitigation by the retention basin with a complex topography and lateral flow patterns.

강변저류지는 일정 규모 이상의 홍수를 하도로부터 분배하여 홍수량을 저감시킴으로써 홍수위험을 저감시키는 수공 구조물이다. 본 연구에서는 강변저류지에 의한 홍수저감효과를 분석하기 위하여 수치모의를 수행하였다. 기후변화에 의한 이상홍수 발생시, 홍수저감효과를 분석하기 위하여 계획빈도를 상회하는 수문조건에 대한 검토를 수행하여 강변저류지의 홍수조절능력을 분석하였다. 또한, 강변저류지가 설치된 하천은 복잡한 지형과 횡월류위어를 통하여 강변저류지로 분배되는 흐름이 동시에 발생하므로 복잡한 흐름현상을 구현하기 위하여 2차원 모형의 적용성을 검토하였다. 기존 강변저류지 홍수저감효과 분석시 주로 활용되는 1차원 모형과 2차원 모형의 결과를 비교 및 검토하였다. 본 연구결과 강변저류지에 의한 홍수저감효과를 모의하기 위해서는 지형 및 횡월류 흐름을 공간적으로 구현할 수 있는 2차원 모형을 활용하는 것이 합리적인 것으로 판단된다.

Keywords

References

  1. Kim, S.J., Hong, S.J., Yoon, B.M. and Ji, U., "Feasibility Analysis of HEC-RAS for Unsteady Flow Simulation in the Stream Channel with a Side-Weir Detention Basin", Journal of Korea Water Resources Association, Vol. 45, No. 5, pp. 495-503, 2012. DOI: http://dx.doi.org/10.3741/JKWRA.2012.45.5.495
  2. Unver, O.L. and Mays, L.W., "Model for Real-Time Optimal Flood Control Operation of a Reservoir System", Water Resources Management, Vol. 4, Kluwer. Dordrecht, The Netherlands, pp. 21-46, 1990. https://doi.org/10.1007/BF00429923
  3. Hall, M.J., Hockin, D.L. and Ellis, J.B., Design of Flood Storage Reservoirs, CIRIA, London, 1993.
  4. McEnroe, B.M., "Preliminary Sizing of Detention Reservoirs to Reduce Peak Discharges", Journal of Hydraulic Engineering, ASCE, Vol. 118, No. 11, pp. 1540-1549, 1992. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1992)118:11(1540)
  5. Burgin, J.F. and Holley, E.R., Side-Diversion Analysis System, CRWR Online Report 02-3, Houston, TX, USA, 2002.
  6. Davis, J.E. and Holley, E.R., "Modeling Side-Weir Diversions for Flood Control", Journal of Hydraulic Engineering, Proceeding, National Conference ASCE, pp. 979-984, 1988.
  7. Fukuoka, S., Kon, T. and Okamura, S., "Assessment of Flood Control Effects of the Tsurumigawa River Multi-Purpose Retarding Basin", Doboku Gakkai Ronbunshuu B, Vol. 63, No. 3, pp. 238-248, 2007. DOI: http://dx.doi.org/10.2208/jscejb.63.238
  8. Hong, Y.M., "Graphical Estimation of Detention Pond Volume for Rainfall of Short Duration", Journal of Hydro-environment Research, Vol. 2, No. 2, pp. 109-117, 2008. DOI: http://dx.doi.org/10.1016/j.jher.2008.06.003
  9. Osorio1, F., Muhaisen, O. and Garcia, P.A., "Copula-Based Simulation for the Estimation of Optimal Volume for a Detention Basin", Journal of Hydrologic Engineering, ASCE, Vol. 14, No. 12, pp. 1378-1382, 2009. DOI: http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000124
  10. Han, K.Y., Kim, J.S., Baek, J.G. and Park, H.S., "Flood Mitigation Analysis by Flood Plain Storage Basin in River", Conference proceeding of the Korean Society of Civil Engineers, pp. 234-237, 2005.
  11. Park, J.H. and Han, K.Y., "Establishment of the Detention Model for the Prevention of Unban Innundation", Conference proceeding of the Korea Water Resources Association, pp. 1656-1660, 2006.
  12. Yoon, K.S. and Kim, S.J., "Assessment Techniques for Storage Reservoirs Using Flood Attenuation Characteristics by Levee Breach", Conference proceeding of the Korean Society of Civil Engineers, pp. 2694-2697, 2007.
  13. Ahn, T.J., Kang, I.W., Kim, B.C., Kim, J.H. and Baek, C.W., "Suggestion for Basic Algorithm of Decision Making Model for Determination of Optimal Size and Location of Wetland", Conference proceeding of the Korean Society of Civil Engineers, pp. 3371-3375, 2007.
  14. Kwak, J.W., Kim, H.S. and Kim, D.G., "Regulation Analysis of Flood Mitigation by Washland Reconstruction", Conference proceeding of the Korean Society of Civil Engineers, pp. 3661-3664, 2008.
  15. Chung, J.H., Han, K.Y. and Kim, K.S., "Optimization of Detention Facilities by Using Multi-Objective Genetic Algorithms", Journal of Korea Water Resources Association, Vol. 41, No. 12, pp. 1211-1218, 2008. DOI: http://dx.doi.org/10.3741/JKWRA.2008.41.12.1211
  16. Kwak, J.W., Kim, J.G., Kim, H.S. and Yoo, B.K., "Effectiveness Analysis of Constructed Washland : (1) Flood Control and Ecological Effect", Journal of the Korean Society of Civil Engineers, Vol. 30, No. 1B, pp. 13-21, 2010.
  17. Yoo, B.K., Kwak, J.W., Kim, H.S. and Kim, J.G., "Effectiveness Analysis of Constructed Washland : (2) Economic Valuation", Journal of the Korean Society of Civil Engineers, Vol. 30, No. 1B, pp. 23-31, 2010.
  18. Kim, H.J., Bae, D.W. and Yoon, K.S., "Experimental Study for Analysis of Flood Mitigation Effect by Detention Basin", Journal of Korean Society of Hazard Mitigation, Vol. 11, No. 6, pp. 281-291, 2011. https://doi.org/10.9798/KOSHAM.2011.11.6.281
  19. Baek, C.W., Kim, B.C. and Ahn, T.J., "Analysis of Flood Reduction Effect of Washlands Based on Variation of Rollway Characteristic", Journal of Korean Society of Hazard Mitigation, Vol. 9, No. 1, pp. 145-150, 2009.
  20. Cho, G.J., Rhee, D.S. and Kim, H.J., "Numerical Model Application for Analysis of Flood Level Mitigation due to Retention-Basin", Journal of the Korea Academia-Industrial cooperation Society, Vol. 15, No. 1, pp. 495-505, 2014. DOI: http://dx.doi.org/10.5762/KAIS.2014.15.1.495
  21. USACE-HEC, Hydrologic Modeling HEC-RAS User's Manual, 2006.
  22. Subramanya, K. and Awasthy, S.C., "Spatially Varied Flow Over Side-Weirs", Journal of the Hydraulics Division, ASCE, Vol. 98, No. HY1, pp. 1-10, 1972.
  23. Hager, W.H., "Die Hydraulik von Verteilkanalen", Mitteilungen 55-56, Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie, ETH Zurich, Zurich, Switzerland, 1982.
  24. Uyumaz, A., "Side Weir in U-Shaped Channel", Journal of Hydraulic Engineering, ASCE, Vol. 123, No. 7, pp. 639-646, 1997. DOI : http://dx.doi.org/10.1061/(ASCE)0733-9429(1997)123:7(639)
  25. Fread, D.L. and Lewis, J.M., NWS FLDWAV Model, NWS Report, Hydrologic Research Laboratory, NWS Officeof Hydrology, NWA, Silver Spring, MD, 1998.
  26. Jia, Y. and Wang, S.S.Y., CCHE2D Two-dimensional Hydro-dynamic and Sediment Transport Model for Unsteady Open Channel Flows over Loose Bed, Technical Report No. NCCHE-TR-2001-1, The University of Mississippi, 2001.
  27. Ministry of Land, Transport and Maritime Affairs, Schematic Plan for Yeongsan-River, 2009.
  28. Ministry of Land, Transport and Maritime Affairs, Enforcement Plan for Yeongsan-River, 2010.
  29. Yeongsan River Flood Control Office, www.yeongsanriver.go.kr, Oct, 2013.
  30. Ministry of Land, Transport and Maritime Affairs, River Restoration for Green Growth, 2012.