DOI QR코드

DOI QR Code

Effect of Baechu Kimchi Added Ecklonia cava Extracts on High Glucose-induced Oxidative Stress in Human Umbilical Vein Endothelial Cells

  • Lee, Hyun-Ah (Department of Food Science and Nutrition, Pusan National University) ;
  • Song, Yeong-Ok (Department of Food Science and Nutrition, Pusan National University) ;
  • Jang, Mi-Soon (Food and Safety Research Center, National Fisheries Research & Development Institute) ;
  • Han, Ji-Sook (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2014.04.04
  • Accepted : 2014.06.24
  • Published : 2014.09.30

Abstract

Endothelial cell dysfunction is considered to be a major cause of vascular complications in diabetes. In the present study, we investigated the protective effect of a baechu kimchi added Ecklonia cava extract (BKE) against high glucose induced oxidative damage in human umbilical vein endothelial cells (HUVECs). Treatment with a high concentration of glucose (30 mM) induced cytotoxicity, whereas treatment with BKE protected HUVECs from high glucose induced damage; by restoring cell viability. In addition, BKE reduced lipid peroxidation, intracellular reactive oxygen species and nitric oxide levels in a dose dependent manner. Treatment with high glucose concentrations also induced the overexpression of inducible nitric oxide synthase, cyclooxygenase-2 and NF-${\kappa}B$ proteins in HUVECs, but BKE treatment significantly reduced the overexpression of these proteins. These findings indicate that BKE may be a valuable treatment against high glucose-induced oxidative stress HUVECs.

Keywords

References

  1. Brownlee M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813-820. https://doi.org/10.1038/414813a
  2. Martin-Gallan P, Carrascosa A, Gussinye M, Dominguez C. 2003. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radic Biol Med 34: 1563-1574. https://doi.org/10.1016/S0891-5849(03)00185-0
  3. Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, Channon KM. 2002. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 105: 1656-1662. https://doi.org/10.1161/01.CIR.0000012748.58444.08
  4. Feener EP, King GL. 2001. Endothelial dysfunction in diabetes mellitus: role in cardiovascular disease. Heart Fail Monit 1: 74-82.
  5. Collier A, Wilson R, Bradley H, Thomson JA, Small M. 1990. Free radical activity in type 2 diabetes. Diabet Med 7: 27-30. https://doi.org/10.1111/j.1464-5491.1990.tb01302.x
  6. Yokozawa T, Kim YA, Kim HY, Lee YA, Nonaka G. 2007. Protective effect of persimmon peel polyphenol against high glucose-induced oxidative stress in LLC-PK(1) cells. Food Chem Toxicol 45: 1979-1987. https://doi.org/10.1016/j.fct.2007.04.018
  7. Halliwell B, Gutteridge J. 1999. Free Radicals in Biology and Medicine. 3rd ed. Oxford University Press, Oxford, UK. p 105-199, 617-783.
  8. Ahn GN, Kim KN, Cha SH, Song CB, Lee JH, Heo MS, Yeo IK, Lee NH, Jee YH, Kim JS, Heu MS, Jeon YJ. 2007. Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and $H_2O_2$-mediated DNA damage. Eur Food Res Technol 226: 71-79. https://doi.org/10.1007/s00217-006-0510-y
  9. Lee SH, Jeon YJ. 2013. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 86: 129-136. https://doi.org/10.1016/j.fitote.2013.02.013
  10. Zhang J, Tiller C, Shen J, Wang C, Girouard GS, Dennis D, Barrow CJ, Miao M, Ewart HS. 2007. Antidiabetic properties of polysaccharide- and polyphenolic-enriched fractions from the brown seaweed Ascophyllum nodosum. Can J Physiol Pharmacol 85: 1116-1123. https://doi.org/10.1139/Y07-105
  11. Shin HC, Hwang HJ, Kang KJ, Lee BH. 2006. An antioxidative and antiinflammatory agent for potential treatment of osteoarthritis from Ecklonia cava. Arch Pharm Res 29: 165-171. https://doi.org/10.1007/BF02974279
  12. Ahn GN, Hwang IS, Park EJ, Kim JH, Jeon YJ, Lee JW, Park JW, Jee YH. 2008. Immunomodulatory effects of an enzymatic extract from Ecklonia cava on murine splenocytes. Mar Biotechnol (NY) 10: 278-289. https://doi.org/10.1007/s10126-007-9062-9
  13. Lee SH, Park MH, Heo SJ, Kang SM, Ko SC, Han JS, Jeon YJ. 2010. Dieckol isolated from Ecklonia cava inhibits $\alpha$-glucosidase and $\alpha$-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice. Food Chem Toxicol 48: 2633-2637. https://doi.org/10.1016/j.fct.2010.06.032
  14. Kang MC, Wijesinghe WAJP, Lee SH, Kang SM, Ko SC, Yang X, Kang NL, Jeon BT, Kim JI, Lee DH, Jeon YJ. 2013. Dieckol isolated from brown seaweed Ecklonia cava attenuates type II diabetes in db/db mouse model. Food Chem Toxicol 53: 294-298. https://doi.org/10.1016/j.fct.2012.12.012
  15. Cheigh HS, Park KY. 1994. Biochemical, microbiological and nutritional aspects of kimchi (Korean fermented vegetable products). Crit Rev Food Sci Nutr 34: 175-203. https://doi.org/10.1080/10408399409527656
  16. Park JM, Shin JH, Gu JG, Yoon SJ, Song JC, Jeon WM, Suh HJ, Chang UJ, Yang CY, Kim JM. 2011. Effect of antioxidant activity in kimchi during a short-term and over-ripening fermentation period. J Biosci Bioeng 112: 356-359. https://doi.org/10.1016/j.jbiosc.2011.06.003
  17. Kim MJ, Kwon MJ, Song YO, Lee EK, Youn HJ, Song YS. 1997. The effects of kimchi on hematological and immunological parameters in vivo and in vitro. J Korean Soc Food Sci Nutr 26: 1208-1214.
  18. Nan HM, Park JW, Song YJ, Yun HY, Park JS, Hyun T, Youn SJ, Kim YD, Kang JW, Kim H. 2005. Kimchi and soybean pastes are risk factors of gastric cancer. World J Gastroenterol 11: 3175-3181. https://doi.org/10.3748/wjg.v11.i21.3175
  19. Islam S, Choi HM. 2009. Antidiabetic effect of Korean traditional Baechu (Chinese cabbage) kimchi in a type 2 diabetes model of rats. J Med Food 12: 292-297. https://doi.org/10.1089/jmf.2008.0181
  20. Lee HA, Song YO, Jang MS, Han JS. 2013. Alleviating effects of baechu kimchi added Ecklonia cava on postprandial hyperglycemia in diabetic mice. Prev Nutr Food Sci 18: 163-168. https://doi.org/10.3746/pnf.2013.18.3.163
  21. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. 2000. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787-790. https://doi.org/10.1038/35008121
  22. Botta A, Martinez V, Mitjans M, Balboa E, Conde E, Vinardell MP. 2014. Erythrocytes and cell line-based assays to evaluate the cytoprotective activity of antioxidant components obtained from natural sources. Toxicol In Vitro 28: 120-124. https://doi.org/10.1016/j.tiv.2013.10.004
  23. Waly MI, Al-Rawahi AS, Al Riyami M, Al-Kindi MA, Al-Issaei HK, Farooq SA, Al-Alawi A, Rahman MS. 2014. Amelioration of azoxymethane induced-carcinogenesis by reducing oxidative stress in rat colon by natural extracts. BMC Complement Altern Med 14: doi: 10.1186/1472-6882-14-60.
  24. MacRury SM, Gordon D, Wilson R, Bradley H, Gemmell CG, Paterson JR, Rumleyd AG, MacCuish AC. 1993. A comparison of different methods of assessing free radical activity in type 2 diabetes and peripheral vascular disease. Diabetic Med 10: 331-335. https://doi.org/10.1111/j.1464-5491.1993.tb00074.x
  25. Luo T, Xia Z. 2006. A small dose of hydrogen peroxide enhances tumor necrosis factor-alpha toxicity in inducing human vascular endothelial cell apoptosis: reversal with propofol. Anesth Analg 103: 110-116. https://doi.org/10.1213/01.ane.0000221183.02244.80
  26. Maritim AC, Sanders RA, Watkins JB 3rd. 2003. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17: 24-38. https://doi.org/10.1002/jbt.10058
  27. Scott JA, King GL. 2004. Oxidative stress and antioxidant treatment in diabetes. Ann NY Acad Sci 1031: 204-213. https://doi.org/10.1196/annals.1331.020
  28. Unlucerci Y, Bekpinar S, Kocak H. 2000. Testis glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase activities in aminoguanidine-treated diabetic rats. Arch Biochem Biophys 379: 217-220. https://doi.org/10.1006/abbi.2000.1876
  29. Ford I, Cotter MA, Cameron NE, Greaves M. 2001. The effects of treatment with alpha-lipoic acid or evening primrose oil on vascular hemostatic and lipid risk factors, blood flow, and peripheral nerve conduction in the streptozotocin-diabetic rat. Metabolism 50: 868-875. https://doi.org/10.1053/meta.2001.24914
  30. Mekinova D, Chorvathova V, Volkovova K, Staruchova M, Grancicova E, Klvanova J, Ondreicka R. 1995. Effect of intake of exogenous vitamins C, E and $\beta$-carotene on the antioxidative status in kidneys of rats with streptozotocin-induced diabetes. Nahrung 39: 257-261. https://doi.org/10.1002/food.19950390402
  31. Kang KA, Lee KH, Chae S, Zhang R, Jung MS, Ham YM, Baik JS, Lee NH, Hyun JW. 2006. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation. J Cell Biochem 97: 609-620. https://doi.org/10.1002/jcb.20668
  32. Kang KA, Lee KH, Chae S, Zhang R, Jung MS, Lee Y, Kim SY, Kim HS, Joo HG, Park JW, Ham YM, Lee NH, Hyun JW. 2005. Eckol isolated from Ecklonia cava attenuates oxidative stress induced cell damage in lung fibroblast cells. FEBS Lett 579: 6295-6304. https://doi.org/10.1016/j.febslet.2005.10.008
  33. Lee YM, Kwon MJ, Kim JK, Suh HS, Choi JS, Song YO. 2004. Isolation and identification of active principle in Chinese cabbage kimchi responsible for antioxidant effect. Korean J Food Sci Technol 36: 129-133.
  34. Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. 2003. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)Hoxidase activation. Diabetes 52: 2795-2804. https://doi.org/10.2337/diabetes.52.11.2795
  35. Giacco F, Brownlee M. 2010. Oxidative stress and diabetic complications. Circ Res 107: 1058-1070. https://doi.org/10.1161/CIRCRESAHA.110.223545
  36. Johansen JS, Harris AK, Rychly DJ, Ergul A. 2005. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 4: 5. https://doi.org/10.1186/1475-2840-4-5
  37. Osakabe N, Yamagishi M, Natsume M, Yasuda A, Osawa T. 2004. Ingestion of proanthocyanidins derived from cacao inhibits diabetes-induced cataract formation in rats. Exp Biol Med (Maywood) 229: 33-39. https://doi.org/10.1177/153537020422900104
  38. Kassab A, Piwowar A. 2012. Cell oxidant stress delivery and cell dysfunction onset in type 2 diabetes. Biochimie 94: 1837-1848. https://doi.org/10.1016/j.biochi.2012.01.020
  39. Giugliano D, Ceriello A, Paolisso G. 1998. Oxidative stress and diabetic vascular complications. Diabetes Care 19: 257-267.
  40. Kim HJ, Jung CL, Jeong YS, Kim JS. 2014. Soybean-derived glyceollins induce apoptosis through ROS generation. Food Funct 5: 688-695. https://doi.org/10.1039/c3fo60379b
  41. Campos J, Schmeda-Hirschmann G, Leiva E, Guzman L, Orrego R, Fernandez P, Gonzalez M, Radojkovic C, Zuniga FA, Lamperti L, Pastene E, Aguayo C. 2014. Lemon grass (Cymbopogon citratus (D.C) Stapf) polyphenols protect human umbilical vein endothelial cell (HUVECs) from oxidative damage induced by high glucose, hydrogen peroxide and oxidised low-density lipoprotein. Food Chem 151: 175-181. https://doi.org/10.1016/j.foodchem.2013.11.018
  42. Park SJ, Kim YT, Jeon YJ. 2012. Antioxidant dieckol downregulates the Rac1/ROS signaling pathway and inhibits Wiskott-Aldrich syndrome protein (WASP)-family verprolinhomologous protein 2 (WAVE2)-mediated invasive migration of B16 mouse melanoma cells. Mol Cells 33: 363-369. https://doi.org/10.1007/s10059-012-2285-2
  43. Nakagami H, Kaneda Y, Ogihara T, Morishita R. 2005. Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis. Curr Diabetes Rev 1: 59-63. https://doi.org/10.2174/1573399052952550
  44. Cosentino F, Luscher TF. 1998. Endothelial dysfunction in diabetes mellitus. J Cardiovasc Pharmacol 32: S54-S61.
  45. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. 1990. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87: 1620-1624. https://doi.org/10.1073/pnas.87.4.1620
  46. Mandrup-Poulsen T, Helqvist S, Wogensen LD, Molvig J, Pociot F, Johannesen J, Nerup J. 1990. Cytokine and free radicals as effector molecules in the destruction of pancreatic beta cells. Curr Top Microbiol Immunol 164: 169-193.
  47. Tesfamariam B. 1994. Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med 16: 383-391. https://doi.org/10.1016/0891-5849(94)90040-X
  48. Blaise GA, Gauvin D, Gangal M, Authier S. 2005. Nitric oxide, cell signaling and cell death. Toxicology 208: 177-192. https://doi.org/10.1016/j.tox.2004.11.032
  49. Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP. 1999. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structureactivity relationships. Biochem Pharmacol 58: 759-765. https://doi.org/10.1016/S0006-2952(99)00160-4
  50. Kobuchi H, Virgili F, Packer L. 1999. Assay of inducible form of nitric oxide synthase activity: effect of flavonoids and plant extracts. Methods Enzymol 301: 504-513. https://doi.org/10.1016/S0076-6879(99)01113-1
  51. Leibowitz A, Faltin Z, Perl A, Eshdat Y, Hagay Y, Peleg E, Grossman E. 2014. Red grape berry-cultured cells reduce blood pressure in rats with metabolic-like syndrome. Eur J Nutr 53: 973-980. https://doi.org/10.1007/s00394-013-0601-z
  52. Minici F, Miceli F, Tiberi F, Tropea A, Orlando M, Gangale MF, Romani F, Catino S, Lanzone A, Apa R. 2007. Ghrelin in vitro modulates vasoactive factors in human umbilical vein endothelial cells. Fertil Steril 88: S1158-S1166. https://doi.org/10.1016/j.fertnstert.2007.01.024
  53. Nachtigal P, Kopecky M, Solichova D, Zdansky P, Semecky V. 2005. The changes in the endothelial expression of cell adhesion molecules and iNOS in the vessel wall after the short-term administration of simvastatin in rabbit model of atherosclerosis. J Pharm Pharmacol 57: 197-203. https://doi.org/10.1211/0022357055353
  54. Liu L, Liu J, Tian XY, Wong WT, Lau CW, Xu A, Xu G, Ng CF, Yao X, Gao Y, Huang Y. Uncoupling protein-2 mediates DPP-4 inhibitor-induced restoration of endothelial function in hypertension through reducing oxidative stress. Antioxid Redox Signal doi:10.1089/ars.2013.5519 [Epub ahead of print].
  55. Guo Z, Su W, Allen S, Pang H, Daugherty A, Smart E, Gong MC. 2005. COX-2 upregulation and vascular smooth muscle contractile hyperreactivity in spontaneous diabetic db/db mice. Cardiovasc Res 67: 723-735. https://doi.org/10.1016/j.cardiores.2005.04.008
  56. Szerafin T, Erdei N, Fulop T, Pasztor ET, Edes I, Koller A, Bagi Z. 2006. Increased cyclooxygenase-2 expression and prostaglandin-mediated dilation in coronary arterioles of patients with diabetes mellitus. Circ Res 99: 12-17. https://doi.org/10.1161/01.RES.0000241051.83067.62
  57. Spencer NF, Poynter ME, Im SY, Daynes RA. 1997 Constitutive activation of NF-$\kappa{B}$ in an animal model of aging. Int Immunol 9: 1581-1588. https://doi.org/10.1093/intimm/9.10.1581
  58. Lenardo MJ, Baltimore D. 1989. NF-$\kappa{B}$: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58: 227-229. https://doi.org/10.1016/0092-8674(89)90833-7
  59. Baeuerle PA, Baltimore D. 1996. NF-kappa B: ten years after. Cell 87: 13-20. https://doi.org/10.1016/S0092-8674(00)81318-5
  60. Han M, Wen JK, Zheng B, Zhang DQ. 2004. Acetylbritannilatone suppresses NO and PGE2 synthesis in RAW 264.7 macrophages through the inhibition of iNOS and COX-2 gene expression. Life Sci 75: 675-684. https://doi.org/10.1016/j.lfs.2003.12.022
  61. Ruderman NB, Williamson JR, Brownlee M. 1992. Glucose and diabetic vascular disease. FASEB J 6: 2905-2914.
  62. Collins T. 1993. Endothelial nuclear factor-kappa B and the initiation of the atherosclerotic lesion. Lab Invest 68: 499-508.
  63. Creager MA, Luscher TF, Cosentino F, Beckman JA. 2003. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Circulation 108: 1527-1532. https://doi.org/10.1161/01.CIR.0000091257.27563.32

Cited by

  1. Recent advances in pharmacological research on Ecklonia species: a review vol.40, pp.9, 2017, https://doi.org/10.1007/s12272-017-0948-4
  2. A survey of research papers on the health benefits of kimchi and kimchi lactic acid bacteria vol.51, pp.1, 2018, https://doi.org/10.4163/jnh.2018.51.1.1
  3. Potential Effect of Polyphenolic-Rich Fractions of Corn Silk on Protecting Endothelial Cells against High Glucose Damage Using In Vitro and In Vivo Approaches vol.26, pp.12, 2014, https://doi.org/10.3390/molecules26123665