DOI QR코드

DOI QR Code

Kinetics of the Formation of Metalloporphyrins and the Catalytic Effect of Lead Ions and Hydrogen Ions

  • Qi, Yong (College of Chemistry And Chemical Engineering, Shan Xi University) ;
  • Pan, Ji Gang (College of Chemistry And Chemical Engineering, Shan Xi University)
  • Received : 2014.03.17
  • Accepted : 2014.07.31
  • Published : 2014.11.20

Abstract

The reaction mechanism of Lead ions catalyzing complexation reactions between TIPP and metal ions was investigated by researching the kinetics of the formation of metalloporphyrins by UV/Vis-spectra, and verified by exploring the formation of metalloporphyrins catalyzed by acetic acid. Kinetics studies suggested that the fluctuations of reaction rate indicated the formation of metalloporphyrin was step-wise, including the pre-equilibrium step (the coordination of the pyrrolenine nitrogens to $Mn^+$) and the rate-controlling step (the deprotonation of the pyrrole proton). In the pre-equalization step, a sitting-atop (SAT) structure formed first with the complexation between larger radius of $Pb^{2+}$ and TIPP, changed the activation, then $Pb^{2+}$ left with the smaller radius of metal ions attacking from the back of the porphyrin ring center. In the rate-controlling step, two pyrrole protons dissociated to restore a stable structure. This was verified by adding acetic acid at different reaction times.

Keywords

References

  1. (a) Sudipta, C.; Kushal, S.; Sohini, B.; Amrit, N.; Subhra, S.; Kaustuv, M.; Abhishek, D. J. Porphyrins Phthalocyanines 2013, 17, 210. https://doi.org/10.1142/S1088424613500119
  2. (b) Teresa, O.; Dabney, W. D.; Caroline, A. G. J. Bacteriol. 2001, 183, 5599. https://doi.org/10.1128/JB.183.19.5599-5608.2001
  3. (a) Shirley, N.; Gabriel, K. B. F.; Geani, M. U.; Kelly, A. D. F. C. Molecules 2013, 18, 7279. https://doi.org/10.3390/molecules18067279
  4. (b) Jeffrey, C. M.; John, S. O.; Terry, D. C. Infect. Immun. 2007, 75, 4857. https://doi.org/10.1128/IAI.00407-07
  5. (c) Shiri, R. B.; Knud, S.; Willi, A.; Johannes, V. B.; Marie, L. B. ACS Nano 2013, 7, 5273. https://doi.org/10.1021/nn4010582
  6. Catherine, M. C.; Volgenant, M. H. van der Veen; Johannes, J. de Soet; Jacob, M. ten Cate. Eur. J. Oral Sci. 2013, 121, 156. https://doi.org/10.1111/eos.12045
  7. Neal, D. H.; Michelle, L. R.; James, E. C.; Yaofang, Z.; Amanda, O.; Hirsch, M.; Indriati, H.; Eric, P. S. MBio. 2013, 4, 241.
  8. Blackwood, M. E.; Rush, T. S.; Medlock, A.; Dailey, H. A.; Spiro, T. G. J. Am. Chem. Soc. 1997, 119, 12170. https://doi.org/10.1021/ja971619c
  9. Lloyd, S. G.; Franco, R.; Moura, J. J. G.; Moura, I.; Ferreira, G. C.; Huynh, B. H. J. Am. Chem. Soc. 1996, 118, 9892. https://doi.org/10.1021/ja954000o
  10. Julio, S. R.; Brian, R. J.; Departamento, D. Q.; Universidade, F. P.; Joao, P. Inorg. Chem. 2013, 52, 1084. https://doi.org/10.1021/ic302401m
  11. Dailey, H. A. Biosynthesis of Heme and Chlorophylls; McGraw, H., Ed.; Academic Press: New York, 1990.
  12. Fleischer, E. B.; Wang, J. H. J. Am. Chem. Soc. 1960, 82, 3498. https://doi.org/10.1021/ja01499a004
  13. Masahiko, I.; Naruhisa, K.; Yasuhiro, I.; Masaharu, N.; Shigenobu, F. Inorg. Chem. 2001, 40, 5636. https://doi.org/10.1021/ic010162b
  14. Yasuhiro, I.; Yumi, S.; Yuko, N.; Yuki, I.; Shigenobu, F. Inorg. Chem. 1998, 37, 5519. https://doi.org/10.1021/ic980420d
  15. Inada, Y.; Sugimoto, Y.; Nakano, Y.; Funahashi, S. Chem. Lett. 1996, 10, 881.
  16. (a) Muhammad, S.; Muhammad, H. S.; Khasan, S. K.; Muhammad, Y.; Mukhtar, A. J. Mater. Sci. 2009, 44, 1192. https://doi.org/10.1007/s10853-008-3234-5
  17. (b) Muhammad, H. S.; Muhammad, S.; Khasan, S. K.; Muhammad, Y.; Mukhtar, A.; Kuan, Y. C.; Ahmad, F. M. N. Appl. Phys. A 2010, 98, 103. https://doi.org/10.1007/s00339-009-5441-6
  18. (c) Muhammad, S.; Muhammad, H. S.; Khasan, S. K.; Muhammad, Y.; Mukhtar, A. Phys. Scr. 2010, 82, 1.
  19. (d) Muhammad, S.; Muhammad, H. S.; Khasan, S. K.; Muhammad, Y.; Mukhtar, A. Sens. Actuators B 2009, 137, 442. https://doi.org/10.1016/j.snb.2009.01.016
  20. Ann, F. W. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: San Diego, 2000; pp 81-175.
  21. (a) Motoharu, T. Pure & Appi. Chem. 1983, 55, 151.
  22. (b) Zhu, Z. A.; Xia, X.; Chen, R. T. Acta Phys-Chim. Sin. 1991, 7, 456.
  23. Rothemund, P. J. Am. Chem. Soc. 1935, 57, 2179. https://doi.org/10.1021/ja01314a041
  24. Everlby, B. F. Acc. Chem. Res. 1970, 3(3), 105. https://doi.org/10.1021/ar50027a004

Cited by

  1. Acid–base equilibria and coordination chemistry of the 5,10,15,20-tetraalkyl-porphyrins: implications for metalloporphyrin synthesis vol.5, pp.33, 2015, https://doi.org/10.1039/C5RA01323B
  2. Easy sensing of lead and zinc in water using smart glass based on cationic porphyrin layers vol.42, pp.11, 2018, https://doi.org/10.1039/C8NJ00736E
  3. Microwave-assisted synthesis of fluorine substituted porphyrins and kinetics of formation of zinc porphyrin complexes in acetic acid vol.19, pp.12, 2014, https://doi.org/10.1142/s1088424615501096