DOI QR코드

DOI QR Code

Law, Theory, and Principle: Confusion in the Normative Meaning and Actual Usage

법칙, 이론, 그리고 원리: 규범적 의미와 실제사용에서의 혼란

  • Received : 2014.05.26
  • Accepted : 2014.08.25
  • Published : 2014.08.30

Abstract

Educational Discourses on the nature of science(NOS) identify understanding of the role of scientific knowledge, especially the distinction between law and theory, as a crucial goal of instruction. However, the scientist community uses the terms such as law, theory, and principle without explicit definition so that the terms have no coherent meanings in their conventional language expression. The inconsistency between the norm and the reality could impose confusion on the teaching and learning. From the awareness of the problem, this study critically reviews the science education research papers and literatures on the philosophy of science which focus on the meaning of law, theory, or principle and the structure of scientific knowledge. From the examination of the science education researches, it is revealed that the disparity between the normative meanings of the law and theory by NOS researchers and actual usage of the terms is quite serious. From the review of the literatures of the philosophy of science, the necessity of the distintion of three categories: law, theory, and principle beyond the dichotomy between law and theory is brought up. By synthesizing the related literatures, we provide an outline of the characteristics of knowledges belonging to law, theory, and principle. Considering the conflict between the normative definition and the conventional language, it could be unnecessary to emphasize clear distinction on the terms as an instructional goal. Instead, the goal of instruction should focus on that there are three types of scientific knowledges of different functions and characteristics.

과학의 본성(NOS)에 대한 교육 담론들은 과학지식의 역할에 따른 구분, 특히 이론과 법칙의 구분을 과학교육의 중요한 학습목표로 규정한다. 그런데 과학자집단은 법칙, 이론, 원리 등의 용어를 명확한 정의없이 사용하며, 이 용어들이 관습적인 언어표현 속에서 일관된 의미를 갖지도 않는다. 당위와 현실사이의 이러한 차이는 교수학습의 혼란을 유발할 수 있다. 이러한 문제의식에서 본 연구는 법칙, 이론, 원리의 의미, 그리고 과학지식의 구조에 대해 논의한 과학교육연구와 과학철학문헌을 비판적으로 검토하였다. 과학교육연구에 대한 검토 결과 NOS 연구자들에 의한 법칙과 이론의 규범적 정의와 이 용어들의 실제 사용 사이의 불일치는 상당히 심각한 것으로 드러났다. 또한 과학철학문헌에 대한 검토를 통해 법칙과 이론의 구분이라는 이분법을 넘어서 과학지식에서 법칙, 이론, 원리라는 세 범주를 구분해야 할 필요성을 제기하였고, 관련 논의를 종합하여 법칙, 이론, 원리에 해당하는 지식의 특성을 정리하였다. 규범적 정의와 관습 사이의 불일치를 고려하면 세 범주와 관련된 교육의 목표로 용어의 정확한 구분을 강조하는 것은 바람직하지 않을 수 있다. 그보다는 서로 다른 기능과 특징을 갖는 세 종류의 지식이 있다는 것에 교육의 초점을 맞출 필요가 있다.

Keywords

References

  1. Aikenhead, G. S., & Ryan, A. G. (1992). The development of a new instrument: "Views on Science-Technology-Society" (VOSTS), Science Education, 76(5), 477-491. https://doi.org/10.1002/sce.3730760503
  2. Bell, R. L. (2004). Perusing pandora's box. In L. B. Flick & N. G. Lederman, Scientific inquiry and nature of science (pp. 427-446). London: Kluwer Academic Publishers.
  3. Bruner, J. S. (1960). The process of education. Cambridge, MA: Harvard University Press.
  4. Campbell, N. R. (1952). What is science? New York, NY: Dover Publication.
  5. Carnap, R. (1966). An introduction to the philosophy of science. New York, NY: Dover Publication.
  6. Dilworth, C. (2006). The metaphysics of science: An account of modern science in terms of principles, laws and theories. Dordrecht: Springer.
  7. Giere, R. N. (1994). The cognitive structure of scientific theory. Philosophy of Science, 61, 276-296. https://doi.org/10.1086/289800
  8. Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71, 742-752. https://doi.org/10.1086/425063
  9. Giere, R. N. (2006). Scientific perspectivism. Chicago: The University of Chicago Press.
  10. Gilbert, J. K., Boutler, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boutler (Ed.), Developing models in science education (pp. 3-19). Dordrecht: Kluwer Academic Publishers.
  11. Hanson, N. R. (1965). Patterns of discovery: an inquiry into the conceptual foundations of science. Cambridge: Cambridge University Press.
  12. Harre, R. (1970). The principles of scientific thinking. London: Macmillan.
  13. Harre, R. (1972). The philosophies of science. Oxford: Oxford University Press.
  14. Hempel, C. G. (1965). Aspects of scientific explanation and other essays in the philosophy of Science. New York, NY: The Free Press.
  15. Hempel, C. G. (1966). Philosophy of natural science. Englewood Cliffs, NJ: Prentice Hall.
  16. Hodson, D. (1985). Philosophy of science, science and science education. Studies in Science Education, 12, 25-57. https://doi.org/10.1080/03057268508559922
  17. Holloun, I. A. (2006). Modeling theory in science education. Dordrecht: Springer.
  18. Kugler, C. (2002). Darwin's theory, Mendel's laws: Labels & the teaching of science. The American Biology Teacher, 64(5), 341-351. https://doi.org/10.2307/4451309
  19. Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). Chicago : University of Chicago Press.
  20. Lakatos, I. (1980). The methodology of scientific research programmes Volume 1: Philosophical papers. New York, NY: Cambridge University Press.
  21. Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331-359. https://doi.org/10.1002/tea.3660290404
  22. Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwrtz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497-521. https://doi.org/10.1002/tea.10034
  23. Lederman, N. G. (2004). Syntax of nature of science within inquiry and science instruction. In L. B. Flick & N. G. Lederman (Ed), Scientific inquiry and nature of science (pp. 301-317). London: Kluwer Academic Publishers.
  24. Losee, J. (2001). A historical introduction to the philosophy of science (4th ed.). New York, NY: Oxford University Press.
  25. Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science. London: Routledge.
  26. McComas, W. F., Clough, M. P., & Almazroa, H. (2002). The role and character of the nature of science in science education. In W. K. McComas (Ed.), The nature of science in science education (pp. 3-39). Dordrecht: Kluwer Academic Publishers.
  27. McComas, W. F. (2002a). The principal elements of the nature of science: Dispelling the myths. In W. K. McComas (Ed.), The nature of science in science education (pp. 53-70). Dordrecht: Kluwer Academic Publishers.
  28. McComas, W. F. (2002b). A thematic introduction to the nature of science: The rationale and content of a course for science educators. In W. K. McComas (Ed.), The nature of science in science education (pp. 211-222). Dordrecht: Kluwer Academic Publishers.
  29. McComas, W. F., & Olson. J. K (2002). The nature of science in international science education standards documents. In W. K. McComas (Ed.), The nature of science in science education (pp. 40-52). Dordrecht: Kluwer Academic Publishers.
  30. Nagel, E. (1961). The structure of science: Problems in the logic of scientific explanation. London: Routledge & Kegan Paul.
  31. Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. Nersessian, & P. Thagard (Ed), Model-based reasoning in scientific discovery (pp. 5-22), New York, NY: Kluwer Academic Publishers.
  32. Ogunniyi, M. B., & Pella, M. O. (1980). Conceptualizations of scientific concepts, laws, and theories held by Kwara state, Nigeria secondary school science teacher. Science Education, 64(5), 591-599. https://doi.org/10.1002/sce.3730640505
  33. Poincare, H. (1905). Science and hypothesis. New York, NY: The Walter Scott Publishing.
  34. Ryan, A. G.. & Aikenhead, G. S. (1992). Students' preconceptions about epistemology of science. Science Education, 76(6), 559-580. https://doi.org/10.1002/sce.3730760602
  35. Schwartz, R. S., Lederman, N. G., & Crawford, B. A. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the cap between nature of science and scientific inquiry. Science Education, 88, 610-645. https://doi.org/10.1002/sce.10128
  36. Schwartz, R. S., & Lederman, N. G. (2008). What scientists say: Scientists' views of nature of science and relation to science context. International Journal of Science Education, 30(6), 727-771. https://doi.org/10.1080/09500690701225801
  37. The Korean Association for Science Education (2005). Science Education Glossary. Seoul: Kyoyookbook.
  38. Toulmin, S. (1953). The philosophy of science. London: Hutchinson.
  39. Wong, S. L., & Hodson, D. (2008). From the horse's mouth: What scientists say about scientific investigation and scientific knowledge. Science Education, 93, 109-130.

Cited by

  1. An Analysis of the Ontological Causal Relation in Physics and Its Educational Implications vol.25, pp.5-6, 2016, https://doi.org/10.1007/s11191-016-9835-5
  2. The Meanings of Physics Equations and Physics Education vol.73, pp.2, 2018, https://doi.org/10.3938/jkps.73.145
  3. '과학의 본성' 교육 -그 다원성 고찰- vol.38, pp.5, 2018, https://doi.org/10.14697/jkase.2018.38.5.721