References
- Anderson, C. W., & Smith, E. L. (1987). Teaching science. In Koehler-Richardson (Eds.), Educators' handbook: A research perspective (pp. 84-111). White Plains, NY: Longman.
- Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative inquiry learning: models, tools, and challenges. International Journal of Science Education, 32(3), 349-377. https://doi.org/10.1080/09500690802582241
- Bliss, J. (1994). From mental models to modelling. In H. Mellar, J. Bliss, R. Boohan, J. Ogborn, & C. Thompsett (Eds.), Learning with artificial worlds: Computer based modelling in the curriculum (pp. 27-33). London: The Falmer Press.
- Boulter, C. J., & Buckly C. B. (2000). Constructing a typology of model for science Education. In J. K. Gilbert & C. Boulter (Eds.), Developing models in Science Education (pp. 41-57). Boston, MA: Kluwer Academic Publisher.
- Brewe, E. (2008). Modeling theory applied: Modeling instruction in introductory physics. American Journal of Physics, 76(12), 1155-1160. https://doi.org/10.1119/1.2983148
- Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 119-135). Dordrecht, The Netherlands: Kluwer Academic.
- Bybee, R. W. (2011). Scientific and engineering practices in K-12 classrooms: Understanding a framework for K-12 science education. Science and Children, 49(4), 10-16.
- Carey, S., & Smith, C. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28(3), 235-251. https://doi.org/10.1207/s15326985ep2803_4
- Cha, J. H., Kim, Y. H., & Noh, T. H. (2004). Middle and high school students? views on the scientific model. Journal of the Korean Chemical Society, 48(6), 638-644. https://doi.org/10.5012/jkcs.2004.48.6.638
- Chabalengula, V., & Mumba, F. (2012). Promoting biological knowledge generation using model-based inquiry instruction. International Journal of Biology Education, 2(1), 1-24.
- Chamizo, J. A. (2013). A new definition of models and modeling in chemistry' teaching. Science & Education, 22(7), 1613-1632. https://doi.org/10.1007/s11191-011-9407-7
- Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1991). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121-152.
- Clement, J. J. (2000). Model-based learning as a key research area of science education. International Journal of Science Education, 22(9), 1041-1053. https://doi.org/10.1080/095006900416901
- Clement, J. J. (2008). Creative model construction in scientists and students. New York, NY: Springer.
- Clement, J. J., & Rea-Ramirez, M. A. (2008). Model based learning and instruction in science. New York, NY: Springer.
- Coll, R. K. (2005). The role of models/and analogies in science education: Implications from research. International Journal of Science Education, 27(3), 183-198. https://doi.org/10.1080/0950069042000276712
- Coll, R. K., & Treagust, D. F. (2003). Investigation of secondary school, undergraduate, and graduate learners' mental models of ionic bonding. Journal of Research in Science Teaching, 40(5), 464-486. https://doi.org/10.1002/tea.10085
- Davenport, T. H., & Prusak, L. (1997). Working knowledge: How organizations manage what the know. Boston, MA: Harvard business school press.
- DeBoer, G. E. (1991). A history of ideas in science education: Implications for practice. New York, NY: Teachers College Press.
- Francoeur, E. (1997). The forgotten tool: The design and use of molecular models. Social Studies of Science, 27(1), 17-40.
- Fortus, D., Hug, B., Krajcik, J., Kuhn, L., McNeill, K., Reiser, B., ... & Shwartz, Y. (2006). Sequencing and supporting complex scientific inquiry practices in instructional materials for middle school students. In Annual Meeting of the National Association for Research in Science Teaching, San Francisco, CA.
- Giere, R. (1988). Explaining science. Chicago, IL: University of Chicago Press.
- Giere, R., Bickle, J., & Mauldin, R. (2006). Understanding scientific reasoning. London: Thomson Learning.
- Gilbert, J. K. (2004). Model and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2(2), 115-130. https://doi.org/10.1007/s10763-004-3186-4
- Gilbert, J. K., & Boulter, C. J. (1997). Learning science through models and modelling. In B. J. Fraser and K. Tobin (Eds.), The international handbook of science education (pp. 53-66). Dordrecht, The Netherlands: Kluwer.
- Gilbert, J. K., Boulter, C. J., & Rutherford, M. (1998). Models in explanations, part 1: Horses for courses. International Journal of Science Education, 20(1), 83-87. https://doi.org/10.1080/0950069980200106
- Gilbert, J. K., Boulter, C. J., & Rutherford, M. (2000). Explanations with models in science education. Developing Models in Science Education. Dordrecht, The Netherlands: Kluwer.
- Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73-79. https://doi.org/10.1002/tea.3660280107
- Gilbert, S. W., & Ireton, S. (2003). Understanding models in earth and space science. Arlington, VA: NSTA Press.
- Gobert, J. D. (2005). The effect of different learning tasks on model-building in plate tectonics: Diagramming versus explaining. Journal of Geoscience Education, 53(4), 444-455. https://doi.org/10.5408/1089-9995-53.4.444
- Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894. https://doi.org/10.1080/095006900416839
- Gobert, J. D., O'Dwyer, L., Horwitz, P., Buckley, C., Levy, S., & Wilensky, U. (2011). Examining the elationship between students' understanding of the nature of models and conceptual learning in biology, physics, and chemistry. International Journal of Science Education, 33(5), 653-684. https://doi.org/10.1080/09500691003720671
- Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 1-11. https://doi.org/10.1080/095006900289976
- Greca, I. M., & Moreira, M. A. (2002). Mental, physical, and mathematical models in the teaching and learning of Physics. Science Education, 85(6), 106-121.
- Ha, J. H., Lee, H. J., & Kang, S. J. (2009). Perception of science high school students on modeling activity. Journal of Gifted/Talented Education, 19(1), 184-202.
- Haack, S. (2003). Defending science-within reason: Between scientism and cynicism. Amherst, NY: Prometheus Books.
- Hand, B., Choi, A., Greenbowe, T., Schroeder, J., & Bennett, W. (2008). Examining the impact of student use of multiple-mode representations in constructing science arguments. In Annual International Conference of National Association for Research in Science Teaching, Baltimore, MD.
- Hand, B., Wallace, C., & Yang, E. (2004). Using a Science Writing Heuristic to enhance learning outcomes from laboratory activities in seventh-grade science: Quantitative and qualitative aspects. International Journal of Science Education, 26(2), 131-149. https://doi.org/10.1080/0950069032000070252
- Halloun, I. A. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1-26.
- Halloun, I. A. (2006). Modeling theory in science education. Dordrecht, Netherlands: Springer.
- Halloun, I. A. (2007). Mediated modeling in science education. Science and Education, 16(7-8), 653-697. https://doi.org/10.1007/s11191-006-9004-3
- Halloun, I. A., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53(11), 1056-1065. https://doi.org/10.1119/1.14031
- Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of atoms and molecules: Implications for learning chemistry. Science Education, 80(5), 509-534. https://doi.org/10.1002/(SICI)1098-237X(199609)80:5<509::AID-SCE2>3.0.CO;2-F
- Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026. https://doi.org/10.1080/095006900416884
- Henze, I., Van Driel, J., & Verloop, N. (2007). The change of science teachers' personal knowledge about teaching models and modelling in the context of science education reform. International Journal of Science Education, 29(15), 1819-1846. https://doi.org/10.1080/09500690601052628
- Hestenes, D. (1987). Toward a modelling theory of physics instruction. American Journal of Physics, 55(5), 440-454. https://doi.org/10.1119/1.15129
- Hodson, D. (1993). Re-thinking old ways: Towards a more critical approach to practical work in school science. Studies in Science Education, 22, 85-142. https://doi.org/10.1080/03057269308560022
- Hogan, K., & Thomas, D. (2001). Cognitive comparisons of students' systems modelling in ecology. Journal of Science Education and Technology, 10(4), 319-345. https://doi.org/10.1023/A:1012243102249
- Jackson, J., Dukerich, L., & Hestenes D. (2008). Modeling instruction: An effective model for science education. Science Educator, 17(1), 11-17.
- Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference and consciousness. Cambridge: Cambridge University Press.
- Jonassen, D., Strobel, J., & Gottdenker, J. (2005). Model building for conceptual change. Interactive Learning Environments, 13(1-2), 15-37. https://doi.org/10.1080/10494820500173292
- Justi, R., & Gilbert, J. K. (2002a). Modeling, teachers' views on the nature of modeling, and implications for the education of modelers. International Journal of Science Education, 24(4), 369-387. https://doi.org/10.1080/09500690110110142
- Justi, R., & Gilbert, J. K. (2002b). Science teachers' knowledge about and attitudes toward the use of models and modeling in learning sciences. International Journal of Science Education, 24(12), 1273-1292. https://doi.org/10.1080/09500690210163198
- Kang, I., A. (1997). A brief reflection on cognitive and social constructivism. Journal of Educational Technology, 11(2), 3-20.
- Kelly, G. J., & Takao A. (2001). Epistemic levels in argument: An analysis of university oceanography students' use of evidence in writing. Science Education, 86(3), 314-342.
- Kelly, G. J., Bazerman, C., Skukauakaite, A., & Prothero, W. (2002). Rhetorical features of student science writing in introductory university oceanography (pp. 265-282). New York, NY: Routledge Publishers.
- Kim, H. G. (2003). Middle school students' open physics inquiry emphasizing peer argumentation: Its conditions, features, and roles (Doctoral dissertation). Seoul National University, Korea.
- Kim, M. Y., & Kim, H. B., (2007). Analysis of high school students' conceptual change in model-based instruction for blood circulation. Journal of the Korean Association for Research in Science Education, 27(5), 379-393.
- Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96(4), 674-689. https://doi.org/10.1037/0033-295X.96.4.674
- Kwon, Y. J., Jeong, J. S., Park, Y, B., & Kang, M. J. (2003). Focused on inductive, abductive, and deductive processes: A philosophical study on the generating process of declarative scientific knowledge. Journal of the Korean Association for Research in Science Education, 23(3), 215-228.
- Laubichler, M., & Muuller, G. (2007). Modeling biology: Structures, behaviors, evolution. Cambridge, MA: MIT.
- Layton, D. (1973). Science for the people: The origins of the school science curriculum in england. London, England: Allen & Unwin.
- Lederman, N. G. (2007). Nature of science: Past, present and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831-879). Mahwah: Lawrence Erlbaum Associates.
- Lee, J. S. (2002). Principles and methods of teaching writing; Process-oriented approach. Seoul: Teaching the history of science Publishers.
- Lee, K. N. (2007). Effects of constructivistic learning strategy on middle school students' learning of scientific conception learning and scientific attitudes: Focused on science writing (Doctoral dissertation). Chonbuk National University, Korea.
- Lee, M. J. (1999). Children's mental models of the free-fall of objects. Journal of the Korean Association for Research in Science Education, 19(3), 389-399.
- Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy: Supporting development in learning in contexts. In W. Damon, R. M. Lerner, K. A. Renninger, & I. E. Sigel (Eds.), Handbook of child psychology (6th ed., Vol. 4). Hoboken, NJ: John Wiley and Sons.
- Lemke, J. L. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. Martin & R. Veel (Eds.), Reading science: Critical and functional perspectives on discourses of science (pp. 87-113). London: Routledge.
- Lesh, R., & Doerr, H. M. (2000). Symbolizing, communicating, and mathematizing: Key components of models and modeling. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instructional design (pp. 361-383). Mahwah, NJ: Lawrence Erlbaum Associates.
- Magnani, L., & Nersessian, N. (2002). Model-based reasoning: Science, technology, values. New York, NY: Kluwer Academic Publishers.
- Mandinach, E. B. (1988). The cognitive effects of simulation-modelling software and systems thinking on learning and achievement. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA.
- Morgan, M., & Morrison, M. (1999). Models as mediators. Perspectives on natural and social sciences. Cambridge: Cambridge University Press.
- Nam, J. H., Kwak, K. H., Jang, K. H., & Hand, B. (2008). The implementation of argumentation using Science Writing Heuristic (SWH) in middle school science. Journal of the Korean Association for Research in Science Education, 28(8), 922-936.
- National Research Council. (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press.
- National Research Council. (2011). A framework for K-12 science education: Practices, cross-cutting concepts, and core Ideas. Washington, DC: The National Academies Press.
- National Research Council. (2012). A framework for K-12 science education: Practices, cross-cutting concepts, and core ideas. committee on a conceptual Framework for new K-12 science education standards. Washington DC: National Academy Press.
- Norman, D. N. (1983). Some observations on mental models. In D. Genterve Stevens, A. L. (Eds.), Mental models (pp. 7-14). Hillsdale, NJ: Erlbaum.
- Ogan-Bekiroglu, F. (2007). Effects of model-based teaching on preservice physics teachers' conceptions of the moon, moon phrases, and other lunar phenomena. International Journal of Science Education, 29(5), 555-593. https://doi.org/10.1080/09500690600718104
- Oh, P. (2005). A theoretical study on abduction as an inquiry method in earth science. Journal of the Korean Association for Research in Science Education, 25(5), 610-623.
- Oh, P., & Oh, S. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191
- Owens, C. V. (2000). Teachers' responses to science writing. Teaching and learning-grand forks-, 15(1), 22-35.
- Pineda, L., & Garza, G. (2000). A model for multimodal reference resolution. Computational Linguistics, 26(2), 139-193. https://doi.org/10.1162/089120100561665
- Redish, E. F. (1994). The implications of cognitive studies for teaching physics. American Journal of Physics, 62(9), 792-803.
- Romberg, T., Carpenter, T., & Kwako, J. (2005). Standards based reform and teaching for understanding. In T. Romberg, T. Carpenter, & F. Dremock (Eds.), Understanding mathematics and science matters (pp. 3-26). Mahwah, NJ: Erlbaum.
- Rouse, W. B. & Morris, N. M. (1986). On looking into the black box: Prospects and limits in the search for mental models. Psychological Bulletin, 100(3), 349-363. https://doi.org/10.1037/0033-2909.100.3.349
- Roychoudhury, A., & Roth, W. M. (1996). Interaction in an open-inquiry physics laboratory. International Journal of Science Education, 18(4), 423-445. https://doi.org/10.1080/0950069960180403
- Sarah K. B., & Lance J. R. (2000). Explanation and evidence in informal argument. Cognitive Science, 24(4), 573-604. https://doi.org/10.1207/s15516709cog2404_2
- Schecker, H. P. (1993). Learning physics by making models. Physics Education, 28(2), 102-106. https://doi.org/10.1088/0031-9120/28/2/007
- Schecker, H. P. (1994). System dynamics in high school physics. Proceedings of the 1994 International System Dynamics Conference, Stirling, Scotland (pp. 74-84).
- Schwarz, C. V. (2009). Developing preservice elementary teachers' knowledge and practices through modeling-centered scientific inquiry. Science Education, 93(4), 720-744. https://doi.org/10.1002/sce.20324
- Schwarz, C. V., & Gwekwerere, Y. N. (2007). Using a guided inquiry and modeling instructional framework (EIMA) to support preservice K-8 science teaching. Science Education, 91(1), 158-186. https://doi.org/10.1002/sce.20177
- Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for science modeling: making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
- Schwarz, C. V., & White B. Y., (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling, Cognition and Instruction, 23(2), 165-205. https://doi.org/10.1207/s1532690xci2302_1
- Seigel, H. (1988). Education reason: Rationality, critical thinking and education. London: Routledge.
- Sins, P. H. M., Savelsbergh, E. R., & van Joolingen, W. R. (2005). The difficult process of scientific modelling: An analysis of novices' reasoning during computer-based modelling, International Journal of Science Education, 27(14), 1695-1721. https://doi.org/10.1080/09500690500206408
- Suckling, C. J., Suckling, K. E., & Suckling, C. W. (1978). Chemistry through models. Concepts and applications of modeling in chemical science, technology and industry. Cambridge: Cambridge University Press.
- Stewart, J., Cartier, J. L., & Passmore, C. M. (2005). Developing understanding through model-based inquiry. In M. S. Donovan & J. D. Bransford (Eds.), How students learn (pp. 515-565). Washington, DC: National Research Council.
- Stewart, J., Hafner, R., Johnson, S., & Finkel, E. (1992). Science as model building: Computers and high-school genetics. Educational Psychologist, 27(3), 317-336. https://doi.org/10.1207/s15326985ep2703_4
- Sun D., & Looi C. K. (2013). Designing a web-based science learning environment for model-based collaborative inquiry. Journal of Science Education and Technology, 22(1), 73-89. https://doi.org/10.1007/s10956-012-9377-9
- Tomasi, J. (1988). Models and modelling in theoretical chemistry. Journal of Molecular Structure, 179(1), 273-292. https://doi.org/10.1016/0166-1280(88)80128-3
- Treagust, D. F., Chittelborough, G. D., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368. https://doi.org/10.1080/09500690110066485
- van Driel, J. H., & Verloop, N. (1999). Teachers' knowledge of models and modeling in science. International Journal of Science Education, 21(11), 1141-1153. https://doi.org/10.1080/095006999290110
- van Driel, J. H., & Verloop, N. (2002). Experienced teachers' knowledge of teaching and learning of models and modeling in science education. International Journal of Science Education, 24(12), 1255-1272. https://doi.org/10.1080/09500690210126711
- Vosnadiu, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45-69. https://doi.org/10.1016/0959-4752(94)90018-3
- Webb, M. E. (1994). Beginning computer-based modelling in primary schools. Computers in Education, 22(1), 129-144. https://doi.org/10.1016/0360-1315(94)90081-7
- Wells, M., Hestenes, D., & Swackhamer, G. (1995). A modeling method for high school physics instruction. American Journal of Physics, 63(7), 606-619. https://doi.org/10.1119/1.17849
- White, B. Y. (1993). Thinker Tools: Causal models, conceptual change, and science education. Cognition and Instruction, 10(1), 1-100. https://doi.org/10.1207/s1532690xci1001_1
- White, B. Y., & Frederiksen, J. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3-118. https://doi.org/10.1207/s1532690xci1601_2
- White, B. Y., Frederiksen, J,, Frederiksen, T,, Eslinger, E,, Loper, S., & Collins, A. (2002). Inquiry Island: Affordances of a multi-agent environment for scientific inquiry and reflective learning. In: Proceedings of the 5th international conference of the learning sciences (ICLS), Erlbaum, Mahwah, NJ.
- Windschitl M., Thompson J., & Braaten M., (2008a). Beyond the scientific method: Model-Based Inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20259
- Windschitl, M., Thompson, J., & Braaten, M. (2008b). How novice science teachers appropriate epistemic discourses around model-based inquiry for use in classrooms. Cognition and Instruction, 26(3), 310-378. https://doi.org/10.1080/07370000802177193
- Tapio, I. (2007). Models and modeling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16(7-8), 751-773. https://doi.org/10.1007/s11191-006-9000-7
Cited by
- Investigating the Cognitive Process of a Student's Modeling on a Modeling-Emphasized Argument-Based General Chemistry Experiment vol.35, pp.2, 2015, https://doi.org/10.14697/jkase.2015.35.2.0313
- Analysis of Changes in Preservice Science Teachers’ Modeling Ability in Argument-based General Chemistry Laboratory Investigations vol.60, pp.4, 2016, https://doi.org/10.5012/jkcs.2016.60.4.276
- A Study of Preliminary Biology Teachers’Scientific Inquiry Skills and LogicalThinking Ability through the Activity of Science Writing vol.44, pp.1, 2014, https://doi.org/10.15717/bioedu.2016.44.1.114
- 초등학생들의 과학적 모델 사용 활성화를 위한 인포그래픽 수업의 효과 vol.36, pp.2, 2014, https://doi.org/10.14697/jkase.2016.36.2.0279
- 물질의 입자성에 대한 모형 구성 과정에서 나타나는 소집단 토론과 전체 학급 토론의 특징 vol.36, pp.3, 2016, https://doi.org/10.14697/jkase.2016.36.3.0361
- 과학교육에서 모델 및 모델링에 대한 고찰 -메타모델링 지식을 중심으로- vol.37, pp.2, 2014, https://doi.org/10.14697/jkase.2017.37.2.0239
- 과학교육에서 모델과 모델링 관련 국내 과학 교육 연구 동향 분석 vol.37, pp.4, 2014, https://doi.org/10.14697/jkase.2017.37.4.539