DOI QR코드

DOI QR Code

The Development of Argument-based Modeling Strategy Using Scientific Writing

과학적 글쓰기를 활용한 논의-기반 모델링 전략의 개발

  • Received : 2014.07.24
  • Accepted : 2014.08.25
  • Published : 2014.08.30

Abstract

The purpose of this study is to develop an argument-based modeling strategy, utilizing writing and argumentation for communication in science education. We need to support students and teachers who have difficulty in modeling in science education, this strategy focuses on development of four kinds of factors as follows: First, awareness of problems, recognizing in association with problems by observing several problematic situations. Second is science concept structuralization suggesting enough science concepts by organization for scientific explanation. The third is claim-evidence appropriateness that suggests appropriate representation as evidence for assertions. Last, the use of various representations and multimodal representations that converts and integrates these representations in evidence suggestion. For the development of these four factors, this study organized three stages. 'Recognition process' for understanding of multimodal representations, and 'Interpretation process' for understanding of activity according to multimodal representations, 'Application process' for understanding of modeling through argumentation. This application process has been done with eight stages of 'Asking questions or problems - Planning experiment - Investigation through observation on experiment - Analyzing and interpreting data - Constructing pre-model - Presenting model - Expressing model using multimodal representations - Evaluating model - Revising model'. After this application process, students could have opportunity to form scientific knowledge by making their own model as scientific explanation system for the phenomenon of the natural world they observed during a series of courses of modeling.

이 연구는 과학교육에서 의사소통을 위해 글쓰기와 논의를 활용한 논의-기반 모델링 전략의 개발을 목적으로 하였다. 논의-기반 모델링 전략은 모델링의 목적인 의사소통을 위해 자신이 만든 모델을 논의와 글쓰기를 통해 과학적 언어를 사용하여 스스로 정리하거나 표현하고, 다른 사람의 의견을 듣고 교환하는 과정을 통해 모델을 평가하고 수정하는 일련의 과정을 의미한다. 이 전략은 과학교육에서 모델링에 어려움을 느끼는 학생과 교사를 지원하기 위한 것으로 다음 네 가지 요소의 발달에 초점을 맞추었다. 첫째 여러 문제 상황을 관찰하여 문제를 연관지어 인식하는 문제인식이다. 둘째는 과학적 설명을 위해 충분한 과학개념을 구조화하여 제시하는 과학개념 구조화이며, 셋째는 주장에 대해 적절한 표상을 증거로 제시하는 주장-증거 적절성이다. 마지막은 증거제시에서 다양한 표상의 사용과 이 표상들을 전환하고 통합하는 다중표상 지수이다. 이 네 가지 요소의 발달을 위해 세 가지 stage를 구성하였다. '인지 과정'은 다중표상에 대한 이해를 위한 것이고, '해석 과정'은 다중표상 활동을 통해 증거 제시의 중요성을 인식하는 것이며, '적용 과정'은 학생들이 논의-기반 모델링을 직접 접해보는 것이다. 이 적용 과정에서는 질문 또는 문제 만들기-실험 설계 및 수행하기-관찰 통한 조사하기-자료의 분석 및 해석하기-임시 모델 설계하기-논의하기-되돌아보기-모델 평가하기-모델 수정하기의 아홉 개의 단계로 이루어진다. 논의-기반 모델링 전략은 학생들이 자신이 설계한 임시모델을 다른 사람과 공유하기 위해 증거를 바탕으로 발표하고 반박하는 논의과정을 통해 증거 제시의 필요성을 인식할 수 있다. 논의과정 후 학생들은 주장과 증거를 다중표상으로 나타내는 것에 대해 되돌아보는 과정을 거치면서 주장-증거 적절성을 높이게 된다. 또한 모델을 평가하기 위한 기준을 만들고, 이를 바탕으로 자신의 모둠이나 다른 모둠의 모델을 평가하고 그 결과를 피드백 받으면서 수정하게 된다. 이러한 일련의 과정을 거치면서 관찰한 자연세계의 현상에 대한 자신의 설명체계를 만듦으로써 과학적 지식을 형성할 수 있는 기회를 제공받을 수 있다.

Keywords

References

  1. Anderson, C. W., & Smith, E. L. (1987). Teaching science. In Koehler-Richardson (Eds.), Educators' handbook: A research perspective (pp. 84-111). White Plains, NY: Longman.
  2. Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative inquiry learning: models, tools, and challenges. International Journal of Science Education, 32(3), 349-377. https://doi.org/10.1080/09500690802582241
  3. Bliss, J. (1994). From mental models to modelling. In H. Mellar, J. Bliss, R. Boohan, J. Ogborn, & C. Thompsett (Eds.), Learning with artificial worlds: Computer based modelling in the curriculum (pp. 27-33). London: The Falmer Press.
  4. Boulter, C. J., & Buckly C. B. (2000). Constructing a typology of model for science Education. In J. K. Gilbert & C. Boulter (Eds.), Developing models in Science Education (pp. 41-57). Boston, MA: Kluwer Academic Publisher.
  5. Brewe, E. (2008). Modeling theory applied: Modeling instruction in introductory physics. American Journal of Physics, 76(12), 1155-1160. https://doi.org/10.1119/1.2983148
  6. Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 119-135). Dordrecht, The Netherlands: Kluwer Academic.
  7. Bybee, R. W. (2011). Scientific and engineering practices in K-12 classrooms: Understanding a framework for K-12 science education. Science and Children, 49(4), 10-16.
  8. Carey, S., & Smith, C. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28(3), 235-251. https://doi.org/10.1207/s15326985ep2803_4
  9. Cha, J. H., Kim, Y. H., & Noh, T. H. (2004). Middle and high school students? views on the scientific model. Journal of the Korean Chemical Society, 48(6), 638-644. https://doi.org/10.5012/jkcs.2004.48.6.638
  10. Chabalengula, V., & Mumba, F. (2012). Promoting biological knowledge generation using model-based inquiry instruction. International Journal of Biology Education, 2(1), 1-24.
  11. Chamizo, J. A. (2013). A new definition of models and modeling in chemistry' teaching. Science & Education, 22(7), 1613-1632. https://doi.org/10.1007/s11191-011-9407-7
  12. Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1991). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121-152.
  13. Clement, J. J. (2000). Model-based learning as a key research area of science education. International Journal of Science Education, 22(9), 1041-1053. https://doi.org/10.1080/095006900416901
  14. Clement, J. J. (2008). Creative model construction in scientists and students. New York, NY: Springer.
  15. Clement, J. J., & Rea-Ramirez, M. A. (2008). Model based learning and instruction in science. New York, NY: Springer.
  16. Coll, R. K. (2005). The role of models/and analogies in science education: Implications from research. International Journal of Science Education, 27(3), 183-198. https://doi.org/10.1080/0950069042000276712
  17. Coll, R. K., & Treagust, D. F. (2003). Investigation of secondary school, undergraduate, and graduate learners' mental models of ionic bonding. Journal of Research in Science Teaching, 40(5), 464-486. https://doi.org/10.1002/tea.10085
  18. Davenport, T. H., & Prusak, L. (1997). Working knowledge: How organizations manage what the know. Boston, MA: Harvard business school press.
  19. DeBoer, G. E. (1991). A history of ideas in science education: Implications for practice. New York, NY: Teachers College Press.
  20. Francoeur, E. (1997). The forgotten tool: The design and use of molecular models. Social Studies of Science, 27(1), 17-40.
  21. Fortus, D., Hug, B., Krajcik, J., Kuhn, L., McNeill, K., Reiser, B., ... & Shwartz, Y. (2006). Sequencing and supporting complex scientific inquiry practices in instructional materials for middle school students. In Annual Meeting of the National Association for Research in Science Teaching, San Francisco, CA.
  22. Giere, R. (1988). Explaining science. Chicago, IL: University of Chicago Press.
  23. Giere, R., Bickle, J., & Mauldin, R. (2006). Understanding scientific reasoning. London: Thomson Learning.
  24. Gilbert, J. K. (2004). Model and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2(2), 115-130. https://doi.org/10.1007/s10763-004-3186-4
  25. Gilbert, J. K., & Boulter, C. J. (1997). Learning science through models and modelling. In B. J. Fraser and K. Tobin (Eds.), The international handbook of science education (pp. 53-66). Dordrecht, The Netherlands: Kluwer.
  26. Gilbert, J. K., Boulter, C. J., & Rutherford, M. (1998). Models in explanations, part 1: Horses for courses. International Journal of Science Education, 20(1), 83-87. https://doi.org/10.1080/0950069980200106
  27. Gilbert, J. K., Boulter, C. J., & Rutherford, M. (2000). Explanations with models in science education. Developing Models in Science Education. Dordrecht, The Netherlands: Kluwer.
  28. Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73-79. https://doi.org/10.1002/tea.3660280107
  29. Gilbert, S. W., & Ireton, S. (2003). Understanding models in earth and space science. Arlington, VA: NSTA Press.
  30. Gobert, J. D. (2005). The effect of different learning tasks on model-building in plate tectonics: Diagramming versus explaining. Journal of Geoscience Education, 53(4), 444-455. https://doi.org/10.5408/1089-9995-53.4.444
  31. Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894. https://doi.org/10.1080/095006900416839
  32. Gobert, J. D., O'Dwyer, L., Horwitz, P., Buckley, C., Levy, S., & Wilensky, U. (2011). Examining the elationship between students' understanding of the nature of models and conceptual learning in biology, physics, and chemistry. International Journal of Science Education, 33(5), 653-684. https://doi.org/10.1080/09500691003720671
  33. Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 1-11. https://doi.org/10.1080/095006900289976
  34. Greca, I. M., & Moreira, M. A. (2002). Mental, physical, and mathematical models in the teaching and learning of Physics. Science Education, 85(6), 106-121.
  35. Ha, J. H., Lee, H. J., & Kang, S. J. (2009). Perception of science high school students on modeling activity. Journal of Gifted/Talented Education, 19(1), 184-202.
  36. Haack, S. (2003). Defending science-within reason: Between scientism and cynicism. Amherst, NY: Prometheus Books.
  37. Hand, B., Choi, A., Greenbowe, T., Schroeder, J., & Bennett, W. (2008). Examining the impact of student use of multiple-mode representations in constructing science arguments. In Annual International Conference of National Association for Research in Science Teaching, Baltimore, MD.
  38. Hand, B., Wallace, C., & Yang, E. (2004). Using a Science Writing Heuristic to enhance learning outcomes from laboratory activities in seventh-grade science: Quantitative and qualitative aspects. International Journal of Science Education, 26(2), 131-149. https://doi.org/10.1080/0950069032000070252
  39. Halloun, I. A. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1-26.
  40. Halloun, I. A. (2006). Modeling theory in science education. Dordrecht, Netherlands: Springer.
  41. Halloun, I. A. (2007). Mediated modeling in science education. Science and Education, 16(7-8), 653-697. https://doi.org/10.1007/s11191-006-9004-3
  42. Halloun, I. A., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53(11), 1056-1065. https://doi.org/10.1119/1.14031
  43. Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of atoms and molecules: Implications for learning chemistry. Science Education, 80(5), 509-534. https://doi.org/10.1002/(SICI)1098-237X(199609)80:5<509::AID-SCE2>3.0.CO;2-F
  44. Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026. https://doi.org/10.1080/095006900416884
  45. Henze, I., Van Driel, J., & Verloop, N. (2007). The change of science teachers' personal knowledge about teaching models and modelling in the context of science education reform. International Journal of Science Education, 29(15), 1819-1846. https://doi.org/10.1080/09500690601052628
  46. Hestenes, D. (1987). Toward a modelling theory of physics instruction. American Journal of Physics, 55(5), 440-454. https://doi.org/10.1119/1.15129
  47. Hodson, D. (1993). Re-thinking old ways: Towards a more critical approach to practical work in school science. Studies in Science Education, 22, 85-142. https://doi.org/10.1080/03057269308560022
  48. Hogan, K., & Thomas, D. (2001). Cognitive comparisons of students' systems modelling in ecology. Journal of Science Education and Technology, 10(4), 319-345. https://doi.org/10.1023/A:1012243102249
  49. Jackson, J., Dukerich, L., & Hestenes D. (2008). Modeling instruction: An effective model for science education. Science Educator, 17(1), 11-17.
  50. Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference and consciousness. Cambridge: Cambridge University Press.
  51. Jonassen, D., Strobel, J., & Gottdenker, J. (2005). Model building for conceptual change. Interactive Learning Environments, 13(1-2), 15-37. https://doi.org/10.1080/10494820500173292
  52. Justi, R., & Gilbert, J. K. (2002a). Modeling, teachers' views on the nature of modeling, and implications for the education of modelers. International Journal of Science Education, 24(4), 369-387. https://doi.org/10.1080/09500690110110142
  53. Justi, R., & Gilbert, J. K. (2002b). Science teachers' knowledge about and attitudes toward the use of models and modeling in learning sciences. International Journal of Science Education, 24(12), 1273-1292. https://doi.org/10.1080/09500690210163198
  54. Kang, I., A. (1997). A brief reflection on cognitive and social constructivism. Journal of Educational Technology, 11(2), 3-20.
  55. Kelly, G. J., & Takao A. (2001). Epistemic levels in argument: An analysis of university oceanography students' use of evidence in writing. Science Education, 86(3), 314-342.
  56. Kelly, G. J., Bazerman, C., Skukauakaite, A., & Prothero, W. (2002). Rhetorical features of student science writing in introductory university oceanography (pp. 265-282). New York, NY: Routledge Publishers.
  57. Kim, H. G. (2003). Middle school students' open physics inquiry emphasizing peer argumentation: Its conditions, features, and roles (Doctoral dissertation). Seoul National University, Korea.
  58. Kim, M. Y., & Kim, H. B., (2007). Analysis of high school students' conceptual change in model-based instruction for blood circulation. Journal of the Korean Association for Research in Science Education, 27(5), 379-393.
  59. Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96(4), 674-689. https://doi.org/10.1037/0033-295X.96.4.674
  60. Kwon, Y. J., Jeong, J. S., Park, Y, B., & Kang, M. J. (2003). Focused on inductive, abductive, and deductive processes: A philosophical study on the generating process of declarative scientific knowledge. Journal of the Korean Association for Research in Science Education, 23(3), 215-228.
  61. Laubichler, M., & Muuller, G. (2007). Modeling biology: Structures, behaviors, evolution. Cambridge, MA: MIT.
  62. Layton, D. (1973). Science for the people: The origins of the school science curriculum in england. London, England: Allen & Unwin.
  63. Lederman, N. G. (2007). Nature of science: Past, present and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831-879). Mahwah: Lawrence Erlbaum Associates.
  64. Lee, J. S. (2002). Principles and methods of teaching writing; Process-oriented approach. Seoul: Teaching the history of science Publishers.
  65. Lee, K. N. (2007). Effects of constructivistic learning strategy on middle school students' learning of scientific conception learning and scientific attitudes: Focused on science writing (Doctoral dissertation). Chonbuk National University, Korea.
  66. Lee, M. J. (1999). Children's mental models of the free-fall of objects. Journal of the Korean Association for Research in Science Education, 19(3), 389-399.
  67. Lehrer, R., & Schauble, L. (2006). Scientific thinking and science literacy: Supporting development in learning in contexts. In W. Damon, R. M. Lerner, K. A. Renninger, & I. E. Sigel (Eds.), Handbook of child psychology (6th ed., Vol. 4). Hoboken, NJ: John Wiley and Sons.
  68. Lemke, J. L. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. Martin & R. Veel (Eds.), Reading science: Critical and functional perspectives on discourses of science (pp. 87-113). London: Routledge.
  69. Lesh, R., & Doerr, H. M. (2000). Symbolizing, communicating, and mathematizing: Key components of models and modeling. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms: Perspectives on discourse, tools, and instructional design (pp. 361-383). Mahwah, NJ: Lawrence Erlbaum Associates.
  70. Magnani, L., & Nersessian, N. (2002). Model-based reasoning: Science, technology, values. New York, NY: Kluwer Academic Publishers.
  71. Mandinach, E. B. (1988). The cognitive effects of simulation-modelling software and systems thinking on learning and achievement. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA.
  72. Morgan, M., & Morrison, M. (1999). Models as mediators. Perspectives on natural and social sciences. Cambridge: Cambridge University Press.
  73. Nam, J. H., Kwak, K. H., Jang, K. H., & Hand, B. (2008). The implementation of argumentation using Science Writing Heuristic (SWH) in middle school science. Journal of the Korean Association for Research in Science Education, 28(8), 922-936.
  74. National Research Council. (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press.
  75. National Research Council. (2011). A framework for K-12 science education: Practices, cross-cutting concepts, and core Ideas. Washington, DC: The National Academies Press.
  76. National Research Council. (2012). A framework for K-12 science education: Practices, cross-cutting concepts, and core ideas. committee on a conceptual Framework for new K-12 science education standards. Washington DC: National Academy Press.
  77. Norman, D. N. (1983). Some observations on mental models. In D. Genterve Stevens, A. L. (Eds.), Mental models (pp. 7-14). Hillsdale, NJ: Erlbaum.
  78. Ogan-Bekiroglu, F. (2007). Effects of model-based teaching on preservice physics teachers' conceptions of the moon, moon phrases, and other lunar phenomena. International Journal of Science Education, 29(5), 555-593. https://doi.org/10.1080/09500690600718104
  79. Oh, P. (2005). A theoretical study on abduction as an inquiry method in earth science. Journal of the Korean Association for Research in Science Education, 25(5), 610-623.
  80. Oh, P., & Oh, S. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191
  81. Owens, C. V. (2000). Teachers' responses to science writing. Teaching and learning-grand forks-, 15(1), 22-35.
  82. Pineda, L., & Garza, G. (2000). A model for multimodal reference resolution. Computational Linguistics, 26(2), 139-193. https://doi.org/10.1162/089120100561665
  83. Redish, E. F. (1994). The implications of cognitive studies for teaching physics. American Journal of Physics, 62(9), 792-803.
  84. Romberg, T., Carpenter, T., & Kwako, J. (2005). Standards based reform and teaching for understanding. In T. Romberg, T. Carpenter, & F. Dremock (Eds.), Understanding mathematics and science matters (pp. 3-26). Mahwah, NJ: Erlbaum.
  85. Rouse, W. B. & Morris, N. M. (1986). On looking into the black box: Prospects and limits in the search for mental models. Psychological Bulletin, 100(3), 349-363. https://doi.org/10.1037/0033-2909.100.3.349
  86. Roychoudhury, A., & Roth, W. M. (1996). Interaction in an open-inquiry physics laboratory. International Journal of Science Education, 18(4), 423-445. https://doi.org/10.1080/0950069960180403
  87. Sarah K. B., & Lance J. R. (2000). Explanation and evidence in informal argument. Cognitive Science, 24(4), 573-604. https://doi.org/10.1207/s15516709cog2404_2
  88. Schecker, H. P. (1993). Learning physics by making models. Physics Education, 28(2), 102-106. https://doi.org/10.1088/0031-9120/28/2/007
  89. Schecker, H. P. (1994). System dynamics in high school physics. Proceedings of the 1994 International System Dynamics Conference, Stirling, Scotland (pp. 74-84).
  90. Schwarz, C. V. (2009). Developing preservice elementary teachers' knowledge and practices through modeling-centered scientific inquiry. Science Education, 93(4), 720-744. https://doi.org/10.1002/sce.20324
  91. Schwarz, C. V., & Gwekwerere, Y. N. (2007). Using a guided inquiry and modeling instructional framework (EIMA) to support preservice K-8 science teaching. Science Education, 91(1), 158-186. https://doi.org/10.1002/sce.20177
  92. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for science modeling: making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  93. Schwarz, C. V., & White B. Y., (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling, Cognition and Instruction, 23(2), 165-205. https://doi.org/10.1207/s1532690xci2302_1
  94. Seigel, H. (1988). Education reason: Rationality, critical thinking and education. London: Routledge.
  95. Sins, P. H. M., Savelsbergh, E. R., & van Joolingen, W. R. (2005). The difficult process of scientific modelling: An analysis of novices' reasoning during computer-based modelling, International Journal of Science Education, 27(14), 1695-1721. https://doi.org/10.1080/09500690500206408
  96. Suckling, C. J., Suckling, K. E., & Suckling, C. W. (1978). Chemistry through models. Concepts and applications of modeling in chemical science, technology and industry. Cambridge: Cambridge University Press.
  97. Stewart, J., Cartier, J. L., & Passmore, C. M. (2005). Developing understanding through model-based inquiry. In M. S. Donovan & J. D. Bransford (Eds.), How students learn (pp. 515-565). Washington, DC: National Research Council.
  98. Stewart, J., Hafner, R., Johnson, S., & Finkel, E. (1992). Science as model building: Computers and high-school genetics. Educational Psychologist, 27(3), 317-336. https://doi.org/10.1207/s15326985ep2703_4
  99. Sun D., & Looi C. K. (2013). Designing a web-based science learning environment for model-based collaborative inquiry. Journal of Science Education and Technology, 22(1), 73-89. https://doi.org/10.1007/s10956-012-9377-9
  100. Tomasi, J. (1988). Models and modelling in theoretical chemistry. Journal of Molecular Structure, 179(1), 273-292. https://doi.org/10.1016/0166-1280(88)80128-3
  101. Treagust, D. F., Chittelborough, G. D., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368. https://doi.org/10.1080/09500690110066485
  102. van Driel, J. H., & Verloop, N. (1999). Teachers' knowledge of models and modeling in science. International Journal of Science Education, 21(11), 1141-1153. https://doi.org/10.1080/095006999290110
  103. van Driel, J. H., & Verloop, N. (2002). Experienced teachers' knowledge of teaching and learning of models and modeling in science education. International Journal of Science Education, 24(12), 1255-1272. https://doi.org/10.1080/09500690210126711
  104. Vosnadiu, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45-69. https://doi.org/10.1016/0959-4752(94)90018-3
  105. Webb, M. E. (1994). Beginning computer-based modelling in primary schools. Computers in Education, 22(1), 129-144. https://doi.org/10.1016/0360-1315(94)90081-7
  106. Wells, M., Hestenes, D., & Swackhamer, G. (1995). A modeling method for high school physics instruction. American Journal of Physics, 63(7), 606-619. https://doi.org/10.1119/1.17849
  107. White, B. Y. (1993). Thinker Tools: Causal models, conceptual change, and science education. Cognition and Instruction, 10(1), 1-100. https://doi.org/10.1207/s1532690xci1001_1
  108. White, B. Y., & Frederiksen, J. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3-118. https://doi.org/10.1207/s1532690xci1601_2
  109. White, B. Y., Frederiksen, J,, Frederiksen, T,, Eslinger, E,, Loper, S., & Collins, A. (2002). Inquiry Island: Affordances of a multi-agent environment for scientific inquiry and reflective learning. In: Proceedings of the 5th international conference of the learning sciences (ICLS), Erlbaum, Mahwah, NJ.
  110. Windschitl M., Thompson J., & Braaten M., (2008a). Beyond the scientific method: Model-Based Inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20259
  111. Windschitl, M., Thompson, J., & Braaten, M. (2008b). How novice science teachers appropriate epistemic discourses around model-based inquiry for use in classrooms. Cognition and Instruction, 26(3), 310-378. https://doi.org/10.1080/07370000802177193
  112. Tapio, I. (2007). Models and modeling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16(7-8), 751-773. https://doi.org/10.1007/s11191-006-9000-7

Cited by

  1. Investigating the Cognitive Process of a Student's Modeling on a Modeling-Emphasized Argument-Based General Chemistry Experiment vol.35, pp.2, 2015, https://doi.org/10.14697/jkase.2015.35.2.0313
  2. Analysis of Changes in Preservice Science Teachers’ Modeling Ability in Argument-based General Chemistry Laboratory Investigations vol.60, pp.4, 2016, https://doi.org/10.5012/jkcs.2016.60.4.276
  3. A Study of Preliminary Biology Teachers’Scientific Inquiry Skills and LogicalThinking Ability through the Activity of Science Writing vol.44, pp.1, 2014, https://doi.org/10.15717/bioedu.2016.44.1.114
  4. 초등학생들의 과학적 모델 사용 활성화를 위한 인포그래픽 수업의 효과 vol.36, pp.2, 2014, https://doi.org/10.14697/jkase.2016.36.2.0279
  5. 물질의 입자성에 대한 모형 구성 과정에서 나타나는 소집단 토론과 전체 학급 토론의 특징 vol.36, pp.3, 2016, https://doi.org/10.14697/jkase.2016.36.3.0361
  6. 과학교육에서 모델 및 모델링에 대한 고찰 -메타모델링 지식을 중심으로- vol.37, pp.2, 2014, https://doi.org/10.14697/jkase.2017.37.2.0239
  7. 과학교육에서 모델과 모델링 관련 국내 과학 교육 연구 동향 분석 vol.37, pp.4, 2014, https://doi.org/10.14697/jkase.2017.37.4.539