DOI QR코드

DOI QR Code

Electrically Controllable Terahertz Wave Modulator Based on a Metamaterial and VO2 Thin Film

메타물질 및 VO2 박막 기반의 전기적 제어 가능한 테라헤르츠파 변조기

  • 류한철 (삼육대학교 카메카트로닉스학과)
  • Received : 2014.09.11
  • Accepted : 2014.09.26
  • Published : 2014.10.25

Abstract

We propose an electrically controllable terahertz wave modulator based on a metamaterial and vanadium dioxide ($VO_2$) thin film. A square loop shape is designed to play the roles of both a resonating metamaterial and a heater to electrically control the conductivity of $VO_2$. The transmission characteristics of the modulator were controlled by voltage. The transmission coefficient of the modulator was stably changed from 0.27 to 0.80 at 470 GHz according to the conductivity values of $VO_2$.

본 논문에서는 온도 변화에 따라 절연체-금속 상전이 특성을 보이는 이산화바나듐($VO_2$)과 메타물질을 이용하여 전기적으로 제어 가능한 테라헤르츠 변조기를 제시하였다. 변조기 기능을 하는 메타물질 구조가 $VO_2$의 도전율 변화에 영향을 주는 열을 전기적으로 조절할 수 있는 히터의 역할도 동시에 할 수 있는 정사각고리 구조의 메타물질을 설계하였다. 설계한 $VO_2$기반 메타물질 변조기의 전파 투과량은 정사각고리 메타물질에 직접 연결된 전압 인가용 도선을 통한 인가 전압 변화로 조절이 가능하다. $VO_2$의 도전율 변화에 따라 전파 투과계수는 470 GHz 에서 0.27에서 0.80으로 안정적으로 조절되었고, 13% 주파수 대역폭에서 투과계수 변화폭이 일정하게 유지되었다.

Keywords

References

  1. P. U. Jepsen, D. G. Cooke, and M. Koch, "Terahertz spectroscopy and imaging - Modern techniques and applications," Laser Photon. Rev. 5, 124-166 (2011). https://doi.org/10.1002/lpor.201000011
  2. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007). https://doi.org/10.1038/nphoton.2007.3
  3. H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, "Terahertz spectroscopy and imaging for defense and security applications," Proc. IEEE 95, 1514-1527 (2007).
  4. N. Kim, S.-P. Han, H. Ko, Y. A. Leem, H.-C. Ryu, C. W. Lee, D. Lee, M. Y. Jeon, S. K. Noh, and K. H. Park, "Tunable continuous-wave terahertz generation/detection with compact 1.55 ${\mu}m$ detuned dual-mode laser diode and InGaAs based photomixer," Opt. Express 19, 15397-15403 (2011). https://doi.org/10.1364/OE.19.015397
  5. S.-P. Han, N. Kim, H. Ko, H.-C. Ryu, J.-W. Park, Y.-J. Yoon, J.-H. Shin, D. H. Lee, S.-H. Park, S.-H. Moon, S.-W. Choi, H. S. Chun, and K. H. Park, "Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection," Opt. Express 20, 18432-18439 (2012). https://doi.org/10.1364/OE.20.018432
  6. H.-C. Ryu, N. Kim, S.-P. Han, H. Ko, J.-W. Park, K. Moon, and K. H. Park, "Simple and cost-effective thickness measurement terahertz system based on a compact 1.55 ${\mu}m$ ${\lambda}/4$ phase-shifted dual-mode laser," Opt. Express 20, 25990-25999 (2012). https://doi.org/10.1364/OE.20.025990
  7. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with negative refractive index," Nature 455, 376-379 (2008). https://doi.org/10.1038/nature07247
  8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-979 (2006). https://doi.org/10.1126/science.1133628
  9. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006). https://doi.org/10.1126/science.1126021
  10. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature 470, 369-373 (2011). https://doi.org/10.1038/nature09776
  11. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006). https://doi.org/10.1038/nature05343
  12. R. Yan, B. S. Rodriguez, L. Liu, D. Jena, and H. G. Xing, "A new class of electrically tunable metamaterial terahertz modulators," Opt. Express 20, 28664-28671 (2012). https://doi.org/10.1364/OE.20.028664
  13. Y. Zhang, S. Qiao, L. Sun, Q. W. Shi, W. Huang, L. Li, and Z. Yang, "Photoinduced active terahertz metamaterials with nanostructured vanadium dioxide film deposited by sol-gel method," Opt. Express 22, 11070-11076 (2014). https://doi.org/10.1364/OE.22.011070
  14. P. U. Jepsen, B. Fischer, A. Thoman, H. Helm, J. Y. Suh, R. Lopez, and R. F. Haglund, "Metal-insulator phase transition in a $VO_2$ thin film observed with terahertz spectroscopy," Phys. Rev. B 74, 205103 (2006). https://doi.org/10.1103/PhysRevB.74.205103
  15. P. Mandal, A. Speck, C. Ko, and S. Ramanathan, "Terahertz spectroscopy studies on epitaxial vanadium dioxide thin films across the metal-insulator transition," Opt. Lett. 36, 1927-1929 (2011). https://doi.org/10.1364/OL.36.001927
  16. Y. G. Jeong, H. Bernien, J. S. Kyoung, H. R. Park, H. S. Kim, J. W. Choi, B. J. Kim, H. T. Kim, K. J. Ahn, and D. S. Kim, "Electrical control of terahertz nano antennas on $VO_2$ thin film," Opt. Express 19, 21211-21215 (2011). https://doi.org/10.1364/OE.19.021211
  17. D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, "Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide," Phys. Rev. Lett. 99, 226401 (2007). https://doi.org/10.1103/PhysRevLett.99.226401
  18. Q. Y. Wen, H. W. Zhang, Q. H. Yang, Z. Chen, Y. Long, Y. L. Jing, Y. Lin, and P. X. Zhang, "A tunable hybrid metamaterial absorber based on vanadium oxide films," J. Phys. D 45, 235106 (2012). https://doi.org/10.1088/0022-3727/45/23/235106
  19. M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B. J. Kim, G. Seo, H. T. Kim, M. D. Ventra, and D. N. Basov, "Reconfigureablegraidient index using $VO_2$ memory metamaterials," Appl. Phys. Lett. 99, 044103 (2011). https://doi.org/10.1063/1.3615804
  20. J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Zing, and W. Zhang, "A close-ring pair terahertz metamaterial resonating at normal incidence," Opt. Express 17, 20307-20312 (2009). https://doi.org/10.1364/OE.17.020307
  21. Z. Hao, M. C. Martin, B. Hartenenck, S. Cabrini, and E. H. Anderson, "Negative index of refraction observed in a single layer of closed ring magnetic dipole resonators," Appl. Phys. Lett. 91, 253119 (2007). https://doi.org/10.1063/1.2825468
  22. S. Sakano, T. Tsuchiya, M. Suzuki, S. Kitajima, and N. Chinone, "Tunable DFB laser with a striped thin-film heater," IEEE Photon. Technol. Lett. 4, 321-323 (1992). https://doi.org/10.1109/68.127200
  23. F. Fan, W.-H. Gu, S. Chen, X.-H. Wang, and S.-J. Chang, "State conversion based on terahertz plasmonics with vanadium dioxide coating controlled by optical pumping," Opt. Lett. 38, 1582-1584 (2013). https://doi.org/10.1364/OL.38.001582
  24. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, "Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial," Nature 487, 345-348 (2012). https://doi.org/10.1038/nature11231

Cited by

  1. vol.26, pp.13, 2018, https://doi.org/10.1364/OE.26.017397