DOI QR코드

DOI QR Code

Biological Control of Anthracnose (Colletotrichum gloeosporioides) in Red Pepper by Bacillus sp. CS-52

Bacillus sp. CS-52를 이용한 고추 탄저병 (Colletotrichum gloeosporioides) 방제 특성

  • Kwon, Joung-Ja (Department of Bioresource Sciences, Andong National University) ;
  • Lee, Jung-Bok (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Beam-Soo (Department of Bioresource Sciences, Andong National University) ;
  • Lee, Eun-Ho (Department of Bioresource Sciences, Andong National University) ;
  • Kang, Kyeong-Muk (Department of Bioresource Sciences, Andong National University) ;
  • Shim, Jang-Sub (Cheongsong Agricultural Technology Center) ;
  • Joo, Woo-Hong (Department of Biology, Changwon National University) ;
  • Jeon, Chun-Pyo (Department of Medicine Quality Analysis, Andong Science College) ;
  • Kwon, Gi-Seok (Department of Bioresource Sciences, Andong National University)
  • 권정자 (안동대학교 생명자원과학과) ;
  • 이중복 (안동대학교 생명자원과학과) ;
  • 김범수 (안동대학교 생명자원과학과) ;
  • 이은호 (안동대학교 생명자원과학과) ;
  • 강경묵 (안동대학교 생명자원과학과) ;
  • 심장섭 (청송군 농업기술센터) ;
  • 주우홍 (창원대학교 생물학과) ;
  • 전춘표 (안동과학대학교 의약품질분석과) ;
  • 권기석 (안동대학교 생명자원과학과)
  • Received : 2014.05.27
  • Accepted : 2014.08.04
  • Published : 2014.09.30

Abstract

This study was carried out in order to develop a biological control of anthracnose of red pepper caused by fungal pathogens. In particular, this study focuses on the Colletotrichum species, which includes important fungal pathogens causing a great deal of damage to red pepper. Antagonistic bacteria were isolated from the soil of pepper fields, which were then tested for biocontrol activity against the Colletotrichum gloeosporioides anthracnose pathogen of pepper. Based on the 16S rRNA sequence analysis, the isolated bacterial strain CS-52 was identical to Bacillus sp. The culture broth of Bacillus sp. CS-52 had antifungal activity toward the hyphae and spores of C. gloeosporioides. Moreover, the substances with antifungal activity were optimized when Bacillus sp. CS-52 was grown aerobically in a medium composed of 0.5% glucose, 0.7% $K_2HPO_4$, 0.2% $KH_2PO_4$, 0.3% $NH_4NO_3$, 0.01% $MnSO_4{\cdot}7H_2O$, and 0.15% yeast extract at $30^{\circ}C$. The inhibition of spore formation resulting from cellulase, siderophores, and indole-3-acetic acid (IAA), were produced at 24 h, 48 h, and 72 h, respectively. Bacillus sp. CS-52 also exhibited its potent fungicidal activity against anthracnose in an in vivo test, at a level of 70% when compared to chemical fungicides. These results identified substances with antifungal activity produced by Bacillus sp. CS-52 for the biological control of major plant pathogens in red pepper. Further studies will investigate the synergistic effect promoting better growth and antifungal activity by the formulation of substances with antifungal activity.

본 연구에서는 고추재배 지역의 오염지 토양으로부터 탄저병원균인 Colletotrichum gloeosporioides에 대하여 항진균 활성이 우수한 균주를 분리하였다. 분리 균주의 생화학적 특성을 조사한 결과 내생포자를 형성하는 Gram-positive이며, 세포크기는 $2.5{\sim}3.0{\times}1.5{\mu}m$으로 짧은 간균으로 siderophore, cellulase와 IAA (Indole-3-acetic acid)을 생산하였다. 16S rRNA 유전자염기서열 분석 결과 Bacillus sp.와 99%의 상동성을 나타내어 Bacillus sp. CS-52로 명명하였다. Bacillus sp. CS-52의 항진균 활성 물질을 생산하기 위한 배양 최적 조건은 0.5% glucose, 0.7% $K_2HPO_4$, 0.2% $K_2HPO_4$, 0.3% $NH_4NO_3$, 0.01% $MnSO_4{\cdot}7H_2O$, 0.15% yeast extract, pH 7과 $30^{\circ}C$로 조사되었으며, 최적화된 배양조건에서 36시간에 최대 성장을 보이며, 고추 탄저병원균에 대하여 60시간 배양조건에서 가장 높은 13.3 mm의 항진균 활성을 보였다. 포자발아억제력은 48시간에 가장 높은 억제력이 보였고, siderophore는 최종배양시간 72시간까지 생성됨을 확인하였다. 식물생장조절물질 IAA와 활성효소인 cellulase의 경우 배양시간 24시간에 최대 생성됨을 확인하였으며, C. gloeosporioides에 대한 실내에서의 항진균활성 검증결과 화학농약 보다 더 높은 70%의 방제가를 나타내었다. 향후 Bacillus sp. CS-52 균주와 배양액을 이용하여 생물학적 친환경방제제로의 제품화가 가능할 것으로 사료된다.

Keywords

References

  1. Babadoost, M. 2009. Phytopthora blight (Phytophthora capsici) of pepper and its management. The 2009 KSPP Fall Meeting and the 1st Japan-Korea Joint Symposium.
  2. Bergeron, R.J. and McManis, J.S. 1991. Synthesis of catecholamide and hydroxamate siderophore. In Winkelmann, G. (eds.), CRC Hanbook of Microbial Iron Chelates, pp. 271-307. CRC Press, Boca Raton, FL, USA.
  3. Cook, R.J. 1990. Twenty-five years of progress towards biological. pp. 1-4. In Hornby, D. (eds.), Biological control of soil-borne plant pathogens, CAB International, Wallingford, UK.
  4. Crosa, J.H. 1989. Genetics and molecular biology of siderophoremediated iron transport in bacteria. Micorbiol. Rev. 53, 517-530.
  5. Farley, J.D. 1967. Survival of Collectotrichum coccodes in soil. Phytopathology 66, 640-641.
  6. Handelsman, J. and Stabb, E.V. 1996. Biocontrol of soilborne plant pathogens. Plant Cell. 8, 1855-1869. https://doi.org/10.1105/tpc.8.10.1855
  7. Hwang, B.K. and Kim, C.H. 1995. Phytophthora blight of pepper and its control in Korea. Plant Dis. 79, 221-227. https://doi.org/10.1094/PD-79-0221
  8. Im, J.H. and Lee, D.G. 2004. Red pepper anthracnose : Colletotrichum gloeosporioides, it's cultural variations and pathogenicity. Res Plant Dis. 10, 203-208. https://doi.org/10.5423/RPD.2004.10.3.203
  9. Imamura, N., Ishikawa, T., Ohtuka, T., Yamamoto, K., Dekura, M., Fukami, H., and Nishida, R. 2000. An antibiotic from Penicillium sp. covering the cocoon of the leaf-rolling moth, dactylioglyphatonica. Biosci. Biochem. 64, 2216-2217. https://doi.org/10.1271/bbb.64.2216
  10. Jeong, H.G. and Kim, S.D. 2003. Purification and characterization of an antifungal antibiotic from Bacillus megaterium KL 39, a biocontrol agent of red-papper phytophtora blight disease. Kor. J. Appl. Microbiol. Biotechnol. 31, 21-25.
  11. Jeong, D.H., Park, K.D., Kim, S.H., Kim, K.R., Choi, S.W., Kim, J.T., Choi, K.H., and Kim, J.H. 2004. Identification of Streptomyces sp. producing antibiotics against phytopathogenic fungi and its structure. J. Microbiol. Biotechnol. 14, 212-215.
  12. Jeong, Y.K., Shin, M.J., Joo, W.H., and Choi, J.S. 2002. Structural analysis of the antifungal antibiotic from Bacillus sp. YJ-63. Kor. J. Appl. Microbiol. Biotechnol. 30, 21-25.
  13. Jung, H.K. and Kim, S.D. 2004. Selection and antagonistic mechanism of Pseudomonas fluorescens 4059 against phytophthora blight disease. Kor. J. Microbiol. Biotechnol. 32, 312-316.
  14. Jung, H.K., Kim, J.R., Woo, S.M., and Kim, S.D. 2006. An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-producing biocontrol activity. Kor. J. Microbiol. Biotechnol. 25, 396-402.
  15. Kim, W.G., Cho, E.K., and Lee, E.J. 1986. Two strains of Colletotrichum gloeosporioides Penz. causing anthracnose on pepper fruits. Korean J. Plant Pathol. 2, 107-113.
  16. Kim, K.Y. and Kim, S.D. 1997. Biological control of Pyricularia aryzae blast spot with the antibiotic substances produced by Bacillus sp. KL-3. Kor. J. Appl. Microbiol. Biotechnol. 25, 396-402.
  17. Kim, Y.S., Son, J.K., Moon, D.C., and Kim, S.D. 1997. Isolation and structure determination of antifungal antibiotics from Bacillus subtilis YB-70. Kor. J. Appl. Microbiol. Biotechnol. 25, 62-67.
  18. Kwon, C.S. and Lee, S.G. 2002. Occurrenceand ecological characteristics of red pepper anthracnose. Res. Plant Dis. 8, 120-123. https://doi.org/10.5423/RPD.2002.8.2.120
  19. Lee, M.W. 1997. Root colonization by beneficial Pseudomonas spp. and bioassay of suppression of Fusarium wilt of radish. Kor. J. Mycol. 25, 10-20.
  20. Lee, Y.S., Choi, J.W., Kim, S.D., and Baik, H.S. 1999. Isolation of antagonistic bacteria to Phytophthora capsici for biological control of phytophthora blight of Red Pepper. Kor. J. Life Science 9, 1-7.
  21. Lee, I.K., Kim, C.J., Kim, S.D., and Yoo, I.D. 1990. Antifungal antibiotic against fruit rot disease of red pepper form Streptomyces parvullus. Kor. J. Appl. Microbiol. Biotechnol. 18, 142-147.
  22. Lee, S.Y., Lee, S.B., Kim, Y.K., and Kim, H.G. 2004. Effect of agrochemicals on mycelial growth and spore germination of a hyperparasite, Ampelomyces quisqualis 94013 for controlling cucumber powdery mildew. Kor. J. Pesti. Sci. 8, 71-78.
  23. Liu, L., Kloepper, J.W., and Tuzun, S. 1995. Induction of systemic resistance in cucumber by plant producing plant growth promoting rhizobacteria: duration of protection and effect of host resistance on protection and root colonization. Phytopathology 85, 1064-1068. https://doi.org/10.1094/Phyto-85-1064
  24. Miller, G.L. 1959. Use of the dinitrosalicylic acid reagent for the determination of reducing sugars. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
  25. Naclerio, G., Ricca, E., Sacco, M., and de Felice, M. 1993. Antimicrobial activity of a newly identified bacteriocin of Bacillus cereus. Appl. Environ. Microbiol. 59, 4314-4316.
  26. Neilands, J.B. 1984. Siderophores of bacteria and fungi. Microbiol. Sci. 1, 9-14.
  27. Okayama, K. and Tsujimeto, A. 1994. Occurrence of strawberry anthracnose caused by Glomerella cingulata (Stoneman) Spaulding et Schrenk and pathogenicity of the fungus. Ann. Phytopath. Soc. 60, 617-623. https://doi.org/10.3186/jjphytopath.60.617
  28. Park, K.S. and Kim, C.H. 1992. Identification, distribution and etiological characteristics of anthracnose fungi of red pepper in Korea. Korean J. Plant Pathol. 8, 61-69.
  29. Paulitz, T.C. and Loper, J.E. 1991. Lack of a role for fluoredcent siderophore production in the biological control of Phythium damping-off of cucumber by astrain of Pseudomonas putida. Phytopathology 81, 930-935. https://doi.org/10.1094/Phyto-81-930
  30. Ping, L. and Boland, W. 2004. Signals from the underground: bacrerial volatils promote growth in Arabidopsis. Trends Plant Sic. 9, 263-266. https://doi.org/10.1016/j.tplants.2004.04.008
  31. Scher, F.M. and Baker, R. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on inductionof soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72, 1567-1573. https://doi.org/10.1094/Phyto-72-1567
  32. Schwyn, B. and Neilands, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  33. Suzi, T. 1992. Biological control of soil borne disease with antagonistic microbes. Prov. '92 agric BioTech Symp. On New Bio Pesticides. 55-76.
  34. Tang, Y.W. and Bonner, J. 1947. The enzymatic inactivation of indole acetic acid I. Some characteristics of the enzyme contained in pea seedlinds. Arch. Biochem. 13, 17-25.
  35. Wedge, D.E., Curry, K.J., Boudreaux, J., Pace, P., and Smith, B.J. 2001. A microtiter assay demonstrates sensitivity and resistance profiles for Botrytis cinerea isolates from Louisiana strawberry farms. Adv. Strawberry Res. 20, 27-33.
  36. Woo, S.M., Woo, J.U., and Kim, S.D. 2007. Purification and characterization of the sidrophore from Bacillus licheniformis K11, a multi-functional plant growth promoting rhizobacterium. Kor. J. Microbial. Biotechnol. 35, 128-134.

Cited by

  1. Evaluation of Antagonistic Activities of Burkholderia cepacia KF1 strain against the Pepper Anthracnose Pathogen Colletotrichum scovillei in South Korea vol.53, pp.4, 2014, https://doi.org/10.14397/jals.2019.53.4.45