DOI QR코드

DOI QR Code

Ethanol Extracts of Chungkookjang Stimulate the Proliferation and Migration of Human Umbilical Vascular Endothelial Cells

청국장 에탄올 추출물의 혈관내피세포 증식과 이동 촉진효과

  • Hwang, Jae Sung (Department of Biotechnology, The Research Institute for Basic Sciences) ;
  • Sung, Dae Il (Department of Biotechnology, The Research Institute for Basic Sciences) ;
  • Lee, Whan Myung (Department of Herbal Cosmetic Science, Hoseo University) ;
  • Chung, Young Shin (Department of Biotechnology, The Research Institute for Basic Sciences) ;
  • Kim, Han Bok (Department of Biotechnology, The Research Institute for Basic Sciences)
  • 황재성 (호서대학교 생명공학과, 기초과학연구소) ;
  • 성대일 (호서대학교 생명공학과, 기초과학연구소) ;
  • 이환명 (호서대학교 한방화장품과학과) ;
  • 정영신 (호서대학교 생명공학과, 기초과학연구소) ;
  • 김한복 (호서대학교 생명공학과, 기초과학연구소)
  • Received : 2014.06.23
  • Accepted : 2014.08.09
  • Published : 2014.09.30

Abstract

In the fermented soybean product known as "chungkookjang", diverse bioactive compounds are produced when the soybean proteins are degraded during fermentation. Vascular endothelial cells (EC) are crucial in vein function and the formation of new vessels. A treatment to stimulate formation of new blood vessels is needed in cerebrovascular diseases that lead to ischaemic stroke and heart attack, as well as for diabetic ulcers. VEGF (Vascular Endothelial Growth Factor) simulates EC formation. The effect of Chungkookjang ethanol extract (CEE) on the proliferation of EC was studied. CEE (100, $1000{\mu}g/ml$) and boiled CEE were as effective as VEGF (10 ng/ml) for the proliferation of human umbilical vascular endothelial cells (HUVEC). The effect of CEE on the migration of HUVEC was investigated using sprout analysis. CEE ($100{\mu}g/ml$) was as effective as VEGF (10 ng/ml) for the migration of HUVEC. Isolation of specific peptides influencing the growth and migration of EC is needed.

청국장은 대두발효식품으로 대두 단백질이 발효 중 분해되면서 다양한 생리활성물질이 만들어진다. 혈관내피세포는 혈관의 기능은 물론 신생혈관 생성을 주도하는 세포이다. 뇌졸중이나 심근경색, 뇌경색 등의 혈관관련 질병들은 신생혈관 생성을 촉진하는 치료법이 필요하다. Vascular Endothelial Growth Factor (VEGF)는 새로운 혈관 형성을 촉진하는 역할을 한다. 본 연구에서는 청국장 에탄올추출물(CEE)이 HUVEC (혈관 내피세포) 증식에 미치는 영향을 조사하여 보았다. 청국장 추출물(100, $1000{\mu}g/ml$)을 HUVEC에 처리했을 때, VEGF (10 ng/ml)를 처리한 대조군과 같은 정도로 세포를 증식시켰다. 열처리한 청국장추출물을 혈관 내피세포에 처리해도 세포 증식효과는 마찬가지였다. 청국장이 세포 증식뿐 아니라 HUVEC이동에도 영향을 주는지 sprout 분석법으로 확인하였다. 청국장 추출물($100{\mu}g/ml$)을 처리했을 때, VEGF (10 ng/ml)와 비슷할 정도로 HUVEC 이동이 일어났다. 청국장 추출물에서 HUVEC 증식과 이동에 영향을 미치는 특정 peptide의 분리가 필요할 것이다.

Keywords

References

  1. Alguie, G.H. 1994. The transparent chamber technique as a tool in experimental tumor therapy. American Assoc. Adv. Sci. 1947, 13-26.
  2. Asahara, T., Murohara, T., Sullivan, A., Silver, M., Van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., and Isner, J.M. 1997. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964-967. https://doi.org/10.1126/science.275.5302.964
  3. Bailer, J.C. and Gornik, H.L. 1997. Cancer undefeated. N. Engl. J. Med. 336, 1569-1574. https://doi.org/10.1056/NEJM199705293362206
  4. Bohem, T., Folkman, J., Browder, T., and O'reilly, M. 1997. Anti-angiogenic therapy of experimental cancer dose not induce acquired drug resistance. Nature 390, 404-407. https://doi.org/10.1038/37126
  5. Bowen, W. 1998. The effects of sugical interferencd with blood supply on the growth of transplanted carcinoma and sarcomata. Sci. Rep. Imperial Cancer Res. Fund. 1908, 146-158.
  6. Brooks, P.C., Montgmery, A.M.P., Rosenfeld, M., Reifeld, R.A., Hu, T., and Kiler, G. 1994. Integrin v3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 79, 1157-1164. https://doi.org/10.1016/0092-8674(94)90007-8
  7. Cao, Y., Ji, R.W., Davison, D., Sler, J., Marti, D., Sohndel, S., McCance, S.G., O'Reilly, M.S., Linas, M., and Folkman, J. 1996. Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J. Biol. Chem. 271, 29461-29467. https://doi.org/10.1074/jbc.271.46.29461
  8. Cao, Y., O'Reilly, S., Marshall, B., Flynn, E., Ji, R.W., and Folkman, J. 1998. Expression of angiostatin cDNA in murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J. Chin. Invest. 101, 1055-1063. https://doi.org/10.1172/JCI1558
  9. Cao, R., Wu, H.L., Veitonmaki, N., Linden, P., Fanebo, J., and Shi, G.Y. 1999. Suppression of angiogenesis and tumor growth by inhibitor KI-5 generated by plasmin-mediated proteolysis. Proc. Natl. Acad. Sci. USA 96, 5728-5733. https://doi.org/10.1073/pnas.96.10.5728
  10. Cho, I.J., Kim, S.H., and Kim, S.G. 2006. Inhibition of TGFβ-1 mediated PAI-1 induction by oltipraz through selective interruption of Smad3 activation. Cytokine 35, 284-294. https://doi.org/10.1016/j.cyto.2006.10.001
  11. Choi, J. and Kim, D. 2003. Theraputic angiogenesis for cardiovascular diseases: the present and future. Kor. Circ. J. 33, 739-745. https://doi.org/10.4070/kcj.2003.33.9.739
  12. Crubayko, F., Liaudet-Coopman, D., Aigner, A., Tuveson, A.T., Berchem, G.J., and Wellstein, A. 1997. A secreted FGF-binding protein can serve as the angiogenic switch in human cancer. Nature Med. 3, 1137-1140. https://doi.org/10.1038/nm1097-1137
  13. Ferra, N. and Davis-Smyth, T. 1997. The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4-25. https://doi.org/10.1210/edrv.18.1.0287
  14. Folkman, J. and Cotran, R. 1976. Relation of vascular proliferation to tumor growth. Int. Rev. Exp. Path. 16, 207-248.
  15. Folkman, J. and Klagsber, M. 1987. Angiogenic factors. Science 235, 442-447. https://doi.org/10.1126/science.2432664
  16. Fox, S.B., Gatter, K.C., and Hrris, A.L. 1996. Tumor angiogenesis. J. Pathol. 179, 232-237. https://doi.org/10.1002/(SICI)1096-9896(199607)179:3<232::AID-PATH505>3.0.CO;2-A
  17. Hwang, J.S., Kim, J.Y., Sung, D.I., Yi, Y.S., and Kim, H.B. 2012. Fermentation of black-soybean Cungkookjang using Bacillus licheniformis B1. J. Microbiol. 48, 216-219.
  18. Jung, J.O. and Kim D.K. 2000. A method of medical treatment use angiogenesis. J. Korean Soc. Vasc. Surg. 16, 265-269.
  19. Kwon, M.J. and Park, J.H. 2009. Impaired wound healing in Diabetes Melitus. Kor. Diab. J. 33, 83-90. https://doi.org/10.4093/kdj.2009.33.2.83
  20. Leung, D.W., Cachines, G., Kuang, W.J., Goeddel, D.V., and Ferrara, N. 1989. Vascular endothelial growth factor is a secreted angiogenic mitogen. Sceience 246, 1306-1309. https://doi.org/10.1126/science.2479986
  21. Matsui, T., Yoo, H.J., Hwang, J.S., Lee, D.S., and Kim, H.B. 2004. Isolation of angiotensin-1-converting enzyme inhibitory peptide from Chungkookjang. Kor. J. Microbiol. 40, 355-358.
  22. Pugsley, M.K. and Tabrizchi, R. 2000. The vascular system; An overview of structure and function. J. Pharmacol. Toxicol. Mech. 44, 333-340. https://doi.org/10.1016/S1056-8719(00)00125-8

Cited by

  1. Reduction of TNFα expression by Chungkookjang extracts in human breast cancer MDA-MB-231 cells vol.52, pp.3, 2016, https://doi.org/10.7845/kjm.2016.6036
  2. Anti-oxidative and Anti-hyperglycemia Effects of Dung Beetle Extracts on the High Fat Diet SD Rats vol.26, pp.7, 2016, https://doi.org/10.5352/JLS.2016.26.7.772