DOI QR코드

DOI QR Code

우주선유발 동위원소를 이용한 지표면의 연대측정: 국내 사례를 중심으로

Cosmogenic Nuclides Dating of the Earth Surface: Focusing on Korean Cases

  • 성영배 (고려대학교 지리교육과) ;
  • 유병용 (한국과학기술원 특성분석센터 AMS 연구실)
  • Seong, Yeong Bae (Department of Geography Education, Korea University) ;
  • Yu, Byung Yong (Laboratory of AMS, Advanced Analysis Center, Korea Institute of Science and Technology)
  • 투고 : 2014.06.30
  • 심사 : 2014.07.07
  • 발행 : 2014.09.30

초록

지난 ~30년 동안 가속기질량분석기와 비활성기체질량분석기 기술의 진보와 함께, 우주선유발 동위원소도 지표면의 연대측정 분야에 광범위하게 적용되어 왔다. 우주선유발 동위원소를 이용한 세부적인 연대측정법으로는 단순노출연대측정, 수직단면연대측정, 매몰연대측정 등이 있어, 다양한 노출(또는 퇴적) 환경에 따라, 다른 접근법이 요구된다. 국내에 적용 가능한 대상으로는, 하안단구, 해안단구, 선상지, 화산지형, 구조지형(단층애), 다양한 암설지형(테일러스, 암괴류 등), 호안 또는 해안 파식대 그리고, 제3기의 퇴적분지층과 고고학유물층에도 적용이 가능하다. 아울러, 기존의 석영이 풍부한 화강암과 변성암 중심에서, 최근에는 석회암과 화산암에도 적용가능하게 되었다.

Over the last three decades, advances in AMS (Accelerator Mass Spectrometry) and Noble Gas Mass Spectrometer make various application of terrestrial cosmogenic nuclides (CNs) to wide range of earth surface sciences possible. Dating techniques can be divided into three sub-approaches: simple surface exposure dating, depth-profile dating, and burial dating, depending on the condition of targeted surfaces. In terms of Korean landscape view, CNs dating can be applied to fluvial and marine terrace, alluvial fan, tectonic landform (fault scarp and faulted surfaces), debris landforms such as rock fall, talus, block field and stream, lacustrine and marine wave-cut platform, cave deposits, Pliocene basin fill and archaeological sites. In addition, in terms of lithology, the previous limit to quartz-rich rocks such as granite and gneiss can be expanded to volcanic and carbonate rocks with the help of recent advances in CNs analysis in those rocks.

키워드

참고문헌

  1. Balco, G., Stone, J.O., Lifton, N.A., and Dunai, T., 2008, A complete and easily accessible means of calculating surface exposure ages or erosion rates from $^{10}Be$ and $^{26}Al$ measurements. Quaternary Geochronology, 3, 174-195. https://doi.org/10.1016/j.quageo.2007.12.001
  2. Blard, P.-H., Bourles, D., Pik, R., and Lave, J., 2008, In-situ cosmogenic $^{10}Be$ in olivines and pyroxenes. Quaternary Geochronology, 3, 196-205. https://doi.org/10.1016/j.quageo.2007.11.006
  3. Braucher, R., Benedetti, L., Bourles, D.L., Brown, E.T., and Chardon, D., 2005, Use of in situ-produced $^{10}Be$ in carbonate rich environments: A first attempt. Geochemica et Cosmochemica Acta, 69, 1473-1478. https://doi.org/10.1016/j.gca.2004.09.010
  4. Chmeleff, J., von Blanckenburg, F., Kossert, K., and Jakob, D., 2010, Determination of the $^{10}Be$ half-life by multicollector ICP-MS and liquid scintillation counting: Nuclear Instruments and Methods in Physics Research, Section B, Beam Interactions with Materials and Atoms, 268, 192-199. https://doi.org/10.1016/j.nimb.2009.09.012
  5. Cho, H.M., Kim, J.Y., Yu, B.Y., Kim, J.K, and Song, J.H., 2013, Introduction of AMS installed at KIST. Fall meeting of Association of Korea Analytical Chemistry, 276p.
  6. Choi, K.H., Seong,Y.B., Jung, P.M., Lee, S.Y., 2012, Using cosmogenic $^{10}Be$ dating to unravel the antiquity of a rocky shore platform on the west coast of Korea. Journal of Coastal Research, 28, 641-657.
  7. Christl, M., Strobl, C., and Mangini, A., 2003, Beryllium-10 in deep-sea sediments: A tracer for the Earth's magnetic field intensity during the last 200,000 years: Quaternary Science Reviews, 22, 5-7, 725-739. https://doi.org/10.1016/S0277-3791(02)00195-6
  8. Cockburn, H.A.P. and Summerfield, M.A., 2004, Geomorphological applications of cosmogenic isotope analysis. Progress in Physical Geography, 28, 1-42.
  9. Desilets, D. and Zreda, M., 2006, Elevation dependence of cosmogenic $^{36}Cl$ production in Hawaiian lava flows. Earth and Planetary Science Letters, 246, 277-287. https://doi.org/10.1016/j.epsl.2006.03.050
  10. Desilets, D., and Zreda, M., 2003, Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in situ cosmogenic dating. Earth and Planetary Science Letters, 206, 21-42. https://doi.org/10.1016/S0012-821X(02)01088-9
  11. Dunai, T.J., 2010, Cosmogenic nuclides: principles, concepts and applications in the earth surface sciences. Cambridge University Press, 199p.
  12. Dunai, T.J., 2000, Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation. Earth and Planetary Science Letters, 176, 157-169. https://doi.org/10.1016/S0012-821X(99)00310-6
  13. Erlanger, E.D., Granger, D.E., and Gibbon, R.G., 2012, Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces. Geology, 40, 1019-1022. https://doi.org/10.1130/G33172.1
  14. Finkel, R.C. and Suter, M., 1993, AMS in the earth sciences: technique and applications. Advances in Analytical Geochemistry, 1, 1-114.
  15. Frankel, K., Finkel, R.C., and Owen, L.A., 2010, Terrestrial cosmogenic nuclides geochronology data reporting standards needed. EOS, 91, 4-6. https://doi.org/10.1029/2010EO010005
  16. Gosse, C.J. and Phillips, F.M., 2001, Terrestrial in situ cosmogenic nuclides: theory and application, Quaternary Science Reviews, 20, 14751560.
  17. Granger, D.E., Lifton, N.A., and Willenbring, J.K., 2013, A cosmic trip: 25 years of cosmogenic nuclides in geology. Geological Society of America Bulletin, 125, 1379-1402. https://doi.org/10.1130/B30774.1
  18. Granger, D.E., 2006, A review of burial dating methods using $^{26}Al$ and $^{10}Be$. Geological Society of America Special Papers, 415, 1-16.
  19. Granger, D.E. and Muzikar, P.F., 2001, Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. Earth and Planetary Science Letters, 188, 1-2. https://doi.org/10.1016/S0012-821X(01)00305-3
  20. Hidy, A.J., Gosse, J.C., Pederson, J.L., Mattern, J.P., and Finkel, R.C., 2010, A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: An example from Lees Ferry, Arizona. Geochemistry, Geophysics, Geosystems, 11, 1-18.
  21. Kang, H.C., Ree, J.H., Seong, Y.B., and Kim, H.S., 2009, Age of Gusan fault located far north of Yangsan fault. Summer meeting of the Korean Geomorphic Association, 56p.
  22. Kim, J.Y., 2005, Possibility and prospect of application using cosmogenic nuclides to korean landforms. Journal of the Korean Geomorphic Association, 12, 117-132.
  23. Kim, K.J., Hong, W., Park, J.H., and Wu, H.J., 2007, New archaeological research using beryllium-10. History and Silhak, 32, 133-165.
  24. Kohl, C.P. and Nishiizumi, K., 1992, Chemical isolation of quartz for measurement of in situ produced cosmogenic nuclides, Geochimica et Cosmochimica Acta, 56, 3583-3587. https://doi.org/10.1016/0016-7037(92)90401-4
  25. Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., Lierse von Gostomski, Ch., Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A., 2010, A new value for the half-life of $^{10}Be$ by heavy-ion elastic recoil detection and liquid scintillation counting: Nuclear Instruments and Methods in Physics Research, Section B, Beam Interactions with Materials and Atoms, 268, 187-191. https://doi.org/10.1016/j.nimb.2009.09.020
  26. Lal, D., 1991, Cosmic ray labeling of erosion surfaces: insitu nuclide production rates and erosion models, Earth and Planetary Science Letters, 104, 424-439. https://doi.org/10.1016/0012-821X(91)90220-C
  27. Lifton, N.A, Bieber, J.W., Clem, J.M., Duldig, M.L., Evenson, P., Humble, J.E., and Pyle, R., 2005, Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth and Planetary Science Letters, 239, 140-161. https://doi.org/10.1016/j.epsl.2005.07.001
  28. Lee, S.Y., Seong, Y.B., Kang, H.C., Choi, K.H., and Yu, B.Y., 2014, Cosmogenic $^{10}Be$ and OSL dating of marine terraces along the central-east coast of Korea: spatio-temporal variations in uplift rates. Island Arc, In submission.
  29. Lee, S.Y., Seong, Y.B., Shin, Y.-K., Choi, K.H., Kang, H.- C., and Choi, J.-H., 2011, Cosmogenic $^{10}Be$ and OSL dating of fluvial strath terraces along the Osip-Cheon river, Korea: tectonic implications. Geosciences Journal, 15, 359-378. https://doi.org/10.1007/s12303-011-0036-6
  30. Matmon, A., Stock, G.M., Granger, D.E., Howard, K.A., 2012, Dating of Pliocene Colorado River sediments: Implications for cosmogenic burial dating and the evolution of the lower Colorado River. Geological Society of America Bulletin, 124, 626-640. https://doi.org/10.1130/B30453.1
  31. Merchel, S., Benedetti, L., Bourls, D.L., Braucher, R., Dewald, A., Faestermann, T., Finkel, R.C., Korschinek, G., Masarik, J., Poutivtsev, M., Rochette, P., Rugel, G., and Zell, K.O., 2010, A multi-radionuclide approach for in situ produced terrestrial cosmogenic nuclides: $^{10}Be$, $^{26}Al$, $^{36}Cl$ and $^{41}Ca$ from carbonate rocks. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268, 1179-1184. https://doi.org/10.1016/j.nimb.2009.10.128
  32. Merchel, S., Braucher, R., Benedetti, L., Grauby, O., and Bourles, D.L., 2008, Dating carbonate rocks with in-situ produced cosmogenic $^{10}Be$: Why it often fails. Quaternary Geochronology, 3, 299-307. https://doi.org/10.1016/j.quageo.2008.01.008
  33. Oh, J.J., Park, S.P., and Seong, Y.B., 2012, Age and charcteritistics of cryoplantion surface on Mt. Mudeung. Journal of the Korean Geomorphic Association, 19, 83-97.
  34. Pigati, Lofton, N.A., Jull, A.J.T., and Quade, J., 2010, EXTRACTION OF IN SITU COSMOGENIC 1$^{4}C$ FROM OLIVINE. Radiocarbon, 52, 1244-1260. https://doi.org/10.1017/S0033822200046336
  35. Seong, Y.B., Kang, H.-C., Ree, J-H., Yi, C., Yoon, H., 2011, Constant slip rate during the late Quaternary along the Sulu He segment of the Altyn Tagh Fault near Changma, Gansu, China. Island Arc, 20, 94-106. https://doi.org/10.1111/j.1440-1738.2010.00743.x
  36. Seong, 2007, Burial dating using multiple cosmogenic nuclides. Journal of the Korean Geomorphic Association, 14, 1-7.
  37. Seong, Y.B. and Kim, J.W., 2003, Application of In-situ Produced Cosmogenic $^{10}Be$ and $^{26}Al$ for Estimating Erosion Rate and Exposure Age of Tor and Block Stream Detritus: Case Study from Mt. Maneo, SouthKorea. Journal of the Korean Geographical Society, 38, 389-399.
  38. Siame, L., Bellier, O., Braucher, R., Sbrier, M., Cushing, M., Bourls, D., Hamelin, B., Baroux, E., de Voogd, B., Raisbeck, G., Yiou, F., 2004, Local erosion rates versus active tectonics: cosmic ray exposure modelling in Provence (south-east France). Earth and Planetary Science Letters, 220, 345-364. https://doi.org/10.1016/S0012-821X(04)00061-5
  39. Stone, J.O., 2000, Air pressure and cosmogenic isotope production: Journal of Geophysical Research, 105, B10, 23753-23759. https://doi.org/10.1029/2000JB900181
  40. Wakasa, S, Matsuzaki, H., Horiuchi, K., Tanaka, Y., Matsukura, Y., 2004, Exposure ages deduced from cosmogenic $^{10}Be$ and $^{26}Al$ produced in situ: application to granite domes and tors in Korea. Nuclear Instruments and Methods in Physics Research B, 223-224, 628-632. https://doi.org/10.1016/j.nimb.2004.04.116
  41. Willenbring, J.K. and von Blanckenburg, F., 2010, Meteoric cosmogenic Beryllium-10 adsorbed to river sediment and soil: Applications for Earth-surface dynamics. Earth-Science Reviews, 98, 105-122. https://doi.org/10.1016/j.earscirev.2009.10.008
  42. Yi, S., Seong, Y.B., Kang, H.C., and Choi, 2012, Possibility of Quaternary glacier in Mt. Baekdu and its relationship to Quaternary volcanic eruption. Journal of Association of Korean Geographical Society, 47, 159-178.
  43. Zerathe, S., Braucher, R., Lebourg, T., Bourles, D., Manetti, M., and Leanni, L., 2013, Dating chert(diagenetic silica) using in-situ produced $^{10}Be$: Possible complications revealed through a comparison with $^{36}Cl$ applied to coexisting limestone. Quaternary Geocchronology, 17, 81-93. https://doi.org/10.1016/j.quageo.2013.01.003

피인용 문헌

  1. 2014, Application of Geochronological and Isotopic Data vol.23, pp.3, 2014, https://doi.org/10.7854/JPSK.2014.23.3.163
  2. Application of Potassium Feldspar pIR-IRSL Method to Dating Quaternary Marine and Fluvial Terrace Sediments in Korea: A Case Study on a Fluvial Terrace and Gusan Fault in Uljin, Korea vol.25, pp.3, 2016, https://doi.org/10.7854/JPSK.2016.25.3.241