DOI QR코드

DOI QR Code

Investigation of Pile Behaviour according to Interface Properties - Comparison between Pile Model Test Using Close Range Photogrammetry and Numerical Analysis

경계면 물성치에 따른 말뚝 거동 분석 - 근거리 사진계측을 이용한 모형시험과 수치해석 비교

  • Lee, Jung-Min (Dept. of Civil Engrg., Seoul National Univ. of Science & Technology) ;
  • Lee, Yong-Joo (Dept. of Civil Engrg., Seoul National Univ. of Science & Technology)
  • 이정민 (서울과학기술대학교 건설시스템공학부) ;
  • 이용주 (서울과학기술대학교 건설시스템공학부)
  • Received : 2014.07.11
  • Accepted : 2014.09.17
  • Published : 2014.09.30

Abstract

In this study, model pile-load test with numerical analysis was carried out to compare and analyze pile behaviour according to interface properties. In the model test, Close Range Photogrammetry (CRP) was chosen to measure the ground deformation. In addition, model steel and concrete piles were used. Based on the model pile test, interface elements around the model pile were used to simulate the slip effect. Interface properties were adopted as interface reduction factor $R_{inter}$. Interface reduction factor, $R_{inter}$ plays a key role in the interface properties. Through this study, it was found that the model ground behaviour measured by CRP corresponded well to the one predicted by the numerical analysis. And, the interface strength reduction factor, $R_{inter}$ value of the steel pile was higher than that of the concrete pile.

본 연구는 지반과 말뚝 사이의 경계면 물성치에 따른 말뚝의 거동을 파악하기 위하여, 말뚝 모형시험 결과와 유한요소해석 결과를 이용하여 비교 분석하였다. 모형시험은 말뚝이 침하함에 따른 주변 지반의 거동을 파악하기 위하여 근거리 사진계측 기법을 적용하였으며, 강재와 콘크리트로 제작 된 각각의 말뚝으로 시험을 수행하였다. 수치해석은 모형시험을 근거로 모델링 하였으며, 지반과 말뚝 사이의 미끄러짐을 모사하기 위하여 경계면 요소를 이용하였다. 또한 경계면 강도감소계수 $R_{inter}$를 이용하여 경계면 요소의 물성치를 나타내었으며, 이 값을 바꿔가며 모형시험 결과와 비교하였다. 본 연구를 통해 근거리 사진계측 기법과 수치해석 결과가 어느 정도 잘 일치하는 것을 확인 할 수 있었다. 또한, 말뚝의 재료에 따른 경계면 강도감소계수 $R_{inter}$ 값이 말뚝 거동에 영향을 주는 것을 확인하였다.

Keywords

References

  1. Kim, Y.S. and Kim, D.M. (2009), "Characteristics of Friction Angles between the Nak-dong River Sand and Construction Materials by Direct Shear Test", Journal of KGS, Korea Geotechnical Society, April 2009, Volume 25, No.4, pp.105-112.
  2. Lee, Y.J. (2004), "Tunnelling adjacent to a row of loaded piles", PhD thesis, University College London, London, pp.102-106.
  3. Lee, Y.J. and Lee, J.M. (2012), "Investigation of Strain Behaviour around the Tip of Model Pile - Comparison between Laboratory Model Test and Numerical analysis -", Journal of KSCE, Korea Society Civil Engineering, July 2012, Volume 32, No.4C, pp. 159-167. https://doi.org/10.12652/Ksce.2012.32.4C.159
  4. PLAXIS V8 (2006). Reference manual.
  5. Potts, D.M. and Zdravkovic, L. (1999), "Finite element analysis on geotechnical engineering - Theory", Thomas Telford Publishing, Thomas Telford Ltd, 1 Heron Quay, London.
  6. Potyondy, J. G. (1961), "Skin Friction Between Various Soils and Construction Materials", Geotechnique, Vol.11, No.4, pp.339-353. https://doi.org/10.1680/geot.1961.11.4.339
  7. Said, I., Gennaro, V. De and Frank R. (2009), "Axisymmetric finite element analysis of pile loading test", Computers and Geotechnics 36, pp.6-19. https://doi.org/10.1016/j.compgeo.2008.02.011
  8. Shin, K.H. (1990), "A study on the friction behavior between granular soil and construction materials", CE-Theses_Master, KAIST.
  9. White, D. J. and Bolton, M. D. (2004), "Displacement and strain paths during plane strain model pile installation in sand", Geotechnique 54, No.6, pp.375-398. https://doi.org/10.1680/geot.2004.54.6.375