일반화된 삼각함수퍼지집합에 대한 정규 지수 퍼지확률

Normal and exponential fuzzy probability for generalized trigonometric fuzzy sets

조윤동*윤용식 **
Yun Dong Jo ${ }^{*}$ and Yong Sik Yun ${ }^{*+}$
*한국교육과정평가원, "제주대학교 수학과
*Korea Institute for Curriculum and Evaluation,
${ }^{+}$"Department of Mathematics, Jeju National University

요약

일반화된 삼각함수 퍼지집합은 삼각함수 퍼지수의 일반화이다. Zadeh ([7])는 확률을 이용하여 퍼지이벤트에 대한 확률을 정의하였다. 우리는 정규분포와 지수분포를 각각 이용하여 실수 \mathbb{R} 위에서 정규퍼지확률과 지수퍼지확률을 정의하고, 일반 화된 삼각함수 퍼지집합에 대하여 정규퍼지확률과 지수퍼지확률을 계산하였다.

Abstract

A generalized trigonometric fuzzy set is a generalization of a trigonometric fuzzy number. Zadeh([7]) defines the probability of the fuzzy event using the probability. We define the normal and exponential fuzzy probability on \mathbb{R} using the normal and exponential distribution, respectively, and we calculate the normal and exponential fuzzy probability for generalized trigonometric fuzzy sets.

Keywords : Fuzzy event, Normal fuzzy probability, Exponential fuzzy probability

1. Introduction

We define the generalized trigonometric fuzzy set and calculate four operations of two generalized trigonometric fuzzy sets([3]). Four operations are based on the Zadeh's extension principle([6]). Zadeh defines the probability of fuzzy event as follows.

Let (Ω, \mathcal{F}, P) be a probability space, where Ω denotes the sample space, \mathcal{F} the σ-algebra on Ω, and P a probability measure. A fuzzy set A on Ω is called a fuzzy event. Let $\mu_{A}(\cdot)$ be the membership function of the fuzzy event A. Then the probability of the fuzzy event A is defined by Zadeh([7]) as

[^0]$$
\widetilde{P}(A)=\int_{\Omega} \mu_{A}(\omega) d P(\omega), \quad \mu_{A}(\cdot): \Omega \rightarrow[0,1] .
$$

We defined the normal fuzzy probability using the normal distribution and calculated the normal fuzzy probability for quadratic fuzzy number([4]). Then we had the explicit formula for the normal fuzzy probability for trigonometric fuzzy number([5]).

In this paper, we calculate the normal and exponential fuzzy probability for generalized trigonometric fuzzy sets.

2. Preliminaries

Let (Ω, \mathcal{F}, P) be a probability space, and X be a random variable defined on it. Let g be a real-valued Borel-measurable function on \mathbb{R}. Then $g(X)$ is also a random variable. We note that a random variable X defined on (Ω, \mathcal{F}, P) induces a measure P_{X} on a Borel set $\mathrm{B} \in \mathbf{B}$ defined by the relation $P_{X}(B)=$ $P\left\{X^{-1}(B)\right\}$. Then P_{X} becomes a probability measure on \mathbf{B} and is called the probability distribution of X. It is known that if $E[g(X)]$ exists, then g is also integrable over \mathbb{R} with respect to P_{X}. Moreover, the
relation

$$
\int_{\Omega} g(X) d P=\int_{\mathbb{R}} g(t) d P_{X}(t)
$$

holds.
Definition 2.1. Let the random variable X have the normal distribution given by the probability density function

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}}, \quad x \in \mathbb{R}
$$

where $\sigma^{2}>0$ and $m \in \mathbb{R}$. The induced measure P_{X} is called the normal distribution.

Definition 2.2. Let the random variable X have the exponential distribution given by the probability density function

$$
f(x)=\lambda e^{-\lambda x}
$$

where $x>0$ and $\lambda>0$. The induced measure P_{X} is called the exponential distribution.

A fuzzy set A on Ω is called a fuzzy event. Let $\mu_{A}(\cdot)$ be the membership function of the fuzzy event A. Then the probability of the fuzzy event A is defined by Zadeh([7]) as

$$
\widetilde{P}(A)=\int_{\Omega} \mu_{A}(\omega) d P(\omega), \quad \mu_{A}(\cdot): \Omega \rightarrow[0,1] .
$$

Definition 2.3. The normal and exponential fuzzy probability $\widetilde{P}(A)$ of a fuzzy set A on \mathbb{R} is defined by

$$
\widetilde{P}(A)=\int_{\mathbb{R}} \mu_{A}(x) d P_{X},
$$

where P_{X} is the normal and exponential distribution, respectively.

Definition 2.4. A trigonometric fuzzy set is a fuzzy number A having membership function

$$
\mu_{A}(x)=\left\{\begin{array}{cl}
0, & x<\theta_{1}, \theta_{3} \leq x \\
\sin \left(x-\theta_{1}\right), & \theta_{1} \leq x<\theta_{3}
\end{array}\right.
$$

where $\theta_{3}-\theta_{1}=\pi$.
The above trigonometric fuzzy set is denoted by $A=<\theta_{1}, \theta_{2}, \theta_{3}>$, where $\theta_{2}=\theta_{1}+\frac{\pi}{2}$. For a trigonometric fuzzy number $A=<\theta_{1}, \theta_{2}, \theta_{3}>$, we define $\sin ^{-1}(\cdot)$ as an inverse of $\sin (\cdot):\left[0, \theta_{2}-\theta_{1}\right] \rightarrow[0,1]$.

The operations of two fuzzy numbers $\left(A, \mu_{A}\right)$ and $\left(B, \mu_{B}\right)$ are based on the Zadeh's extension principle([5]). We consider the following four operations. For all $x \in A$ and $y \in B$

1. Addition $A(+) B$:

$$
\mu_{A(+) B}(z)=\sup _{z=x+y} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}
$$

2. Subtraction $A(-) B$:

$$
\mu_{A(-) B}(z)=\sup _{z=x-y} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}
$$

3. Multiplication $A(\cdot) B$:

$$
\mu_{A(\cdot)}(z)=\sup _{z=x \cdot y} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}
$$

4. Division $A(/) B$:

$$
\mu_{A(/) B}(z)=\sup _{z=x / y} \min \left\{\mu_{A}(x), \mu_{B}(y)\right\}
$$

We studied the four operations described in introduction for two trigonometric fuzzy numbers.

Definition 2.5. ([5]) For two trigonometric fuzzy numbers $A=<c_{1}, c_{2}, c_{3}>$ and $B=<d_{1}, d_{2}, d_{3}>$, we have

1. $A(+) B=<c_{1}+d_{1}, c_{2}+d_{2}, c_{3}+d_{3}>$
2. $A(-) B=<c_{1}-d_{3}, c_{2}-d_{2}, c_{3}-d_{1}>$
3. $A(\cdot) B=<c_{1} \cdot d_{1}, c_{2} \cdot d_{2}, c_{3} \cdot d_{3}>$
4. $A(/) B=<\frac{c_{1}}{d_{3}}, \frac{c_{2}}{d_{2}}, \frac{c_{3}}{d_{1}}>$

Proof. Note that

$$
\mu_{A}(x)=\left\{\begin{array}{cl}
0, & x<c_{1}, \frac{\pi}{k}+c_{1} \leq x, \\
\sin k\left(x-c_{1}\right), & c_{1} \leq x<\frac{\pi}{k}+c_{1}
\end{array}\right.
$$

and

$$
\mu_{B}(x)=\left\{\begin{array}{cl}
0, & x<d_{1}, \frac{\pi}{m}+d_{1} \leq x, \\
\sin m\left(x-d_{1}\right), & d_{1} \leq x<\frac{\pi}{m}+d_{1} .
\end{array}\right.
$$

We calculate exactly four operations using α-cuts. Let $A_{\alpha}=\left[a_{1}^{(\alpha)}, a_{2}^{(\alpha)}\right]$ and $B_{\alpha}=\left[b_{1}^{(\alpha)}, b_{2}^{(\alpha)}\right]$ be the α-cuts of A and B, respectively. Since $\alpha=\sin k\left(a_{1}^{(\alpha)}-c_{1}\right)$ and $a_{2}^{(\alpha)}=\frac{\pi}{k}+2 c_{1}-a_{1}^{(\alpha)}$, we have

$$
\begin{aligned}
A_{\alpha} & =\left[a_{1}^{(\alpha)}, a_{2}^{(\alpha)}\right] \\
& =\left[\frac{1}{k} \sin ^{-1} \alpha+c_{1}, \frac{\pi}{k}+c_{1}-\frac{1}{k} \sin ^{-1} \alpha\right],
\end{aligned}
$$

where $c_{1} \leq \sin ^{-1} \alpha \leq c_{2}$. Similarly,

$$
\begin{aligned}
B_{\alpha} & =\left[b_{1}^{(\alpha)}, b_{2}^{(\alpha)}\right] \\
& =\left[\frac{1}{m} \sin ^{-1} \alpha+d_{1}, \frac{\pi}{m}+d_{1}-\frac{1}{m} \sin ^{-1} \alpha\right] .
\end{aligned}
$$

1. Addition : By the above facts,

$$
\begin{aligned}
A_{\alpha}(+) B_{\alpha}= & {\left[a_{1}^{(\alpha)}+b_{1}^{(\alpha)}, a_{2}^{(\alpha)}+b_{2}^{(\alpha)}\right] } \\
= & {\left[\left(\frac{1}{k}+\frac{1}{m}\right) \sin ^{-1} \alpha+c_{1}+d_{1,},\right.} \\
& \left.\left(\frac{1}{k}+\frac{1}{m}\right)\left(\pi-\sin ^{-1} \alpha\right)+c_{1}+d_{1}\right] .
\end{aligned}
$$

Thus $\mu_{A(+) B}(x)=0$ on the interval $\left[c_{1}+d_{1},\left(\frac{1}{k}+\frac{1}{m}\right) \pi\right.$
$\left.+c_{1}+d_{1}\right]^{c}=\left[c_{1}+d_{1}, c_{3}+d_{3}\right]^{c} \quad$ and $\quad \mu_{A(+) B}(x)=1 \quad$ at $x=\frac{1}{2}\left(\frac{1}{k}+\frac{1}{m}\right) \pi+c_{1}+d_{1}=c_{2}+d_{2}$. Hence $\mu_{A(+) B}(x)=0$ if $\quad x<c_{1}+d_{1,}\left(\frac{1}{k}+\frac{1}{m}\right) \pi+c_{1}+d_{1} \leq x \quad$ and $\quad \mu_{A(+) B}(x)=$ $\sin \frac{k m}{k+m}\left(x-c_{1}-d_{1}\right) \quad$ if $\quad c_{1}+d_{1} \leq x<\left(\frac{1}{k}+\frac{1}{m}\right) \pi+c_{1}$ $+d_{1}$. Thus $A(+) B=<c_{1}+d_{1}, c_{2}+d_{2,}, c_{3}+d_{3}>$.
2. Subtraction : Since

$$
\begin{aligned}
A_{\alpha}(-) B_{\alpha}= & {\left[a_{1}^{(\alpha)}-b_{2}^{(\alpha)}, a_{2}^{(\alpha)}-b_{1}^{(\alpha)}\right] } \\
= & {\left[\left(\frac{1}{k}+\frac{1}{m}\right) \sin ^{-1} \alpha+c_{1}-d_{1}-\frac{\pi}{m},\right.} \\
& \left.\frac{\pi}{k}+c_{1}-d_{1}-\left(\frac{1}{k}+\frac{1}{m}\right) \sin ^{-1} \alpha\right],
\end{aligned}
$$

we have $\mu_{A(-) B}(x)=0$ on the interval $\left[c_{1}-d_{1}-\frac{\pi}{m}\right.$, $\left.\frac{\pi}{k}+c_{1}-d_{1}\right]^{c}=\left[c_{1}-d_{3}, c_{3}-d_{1}\right]^{c} \quad$ and $\quad \mu_{A(-) B}(x)=1 \quad$ at $x=\left(\frac{1}{k}-\frac{1}{m}\right) \frac{\pi}{2}+c_{1}-d_{1}=c_{2}-d_{2}$. Hence $\mu_{A(-) B}(x)=0$ if $\quad x<c_{1}-d_{1}-\frac{\pi}{m}, \frac{\pi}{k}+c_{1}-d_{1} \leq x \quad$ and $\quad \mu_{A(-) B}(x)=$ $\sin \frac{k m}{k+m}\left(x+\frac{\pi}{m}-c_{1}+d_{1}\right) \quad$ if $\quad c_{1}-d_{1}-\frac{\pi}{m} \leq x<\frac{\pi}{k}+c_{1}$ $-d_{1}$. Thus $A(-) B=<c_{1}-d_{3}, c_{2}-d_{2}, c_{3}-d_{1}>$.
3. Multiplication : Since

$$
\begin{aligned}
A_{\alpha}(\cdot) B_{\alpha}= & {\left[a_{1}^{(\alpha)} \cdot b_{1}^{(\alpha)}, a_{2}^{(\alpha)} \cdot b_{2}^{(\alpha)}\right] } \\
= & {\left[c_{1} d_{1}+\left(\frac{d_{1}}{k}+\frac{c_{1}}{m}\right) \sin ^{-1} \alpha+\frac{1}{k m}\left(\sin ^{-1} \alpha\right)^{2},\right.} \\
& \left(\frac{d_{1}}{k}+\frac{c_{1}}{m}\right) \pi+\frac{\pi^{2}}{k m}+c_{1} d_{1}-\left(\frac{2 \pi}{k m}+\frac{d_{1}}{k}\right. \\
& \left.\left.+\frac{c_{1}}{m}\right) \sin ^{-1} \alpha+\frac{1}{k m}\left(\sin ^{-1} \alpha\right)^{2}\right]
\end{aligned}
$$

we have $\mu_{A(\cdot) B}(x)=0 \quad$ on $\quad\left[c_{1} d_{1}, \frac{\pi^{2}}{k m}+\left(\frac{d_{1}}{k}+\frac{c_{1}}{m}\right) \pi+\right.$ $\left.c_{1} d_{1}\right]^{c}=\left[c_{1} d_{1}, c_{3} d_{3}\right]^{c}$ and $\mu_{A(\cdot) B}(x)=1$ at $x=\frac{\pi^{2}}{4 k m}+$ $\left(\frac{d_{1}}{k}+\frac{c_{1}}{m}\right) \frac{\pi}{2}+c_{1} d_{1}=c_{2} d_{2}$. Hence $\quad \mu_{A(\cdot) B}(x)=0 \quad$ if $x<c_{1} d_{1}, \frac{\pi^{2}}{k m}+\left(\frac{d_{1}}{k}+\frac{c_{1}}{m}\right) \pi+c_{1} d_{1} \leq x \quad$ and $\quad \mu_{A(\cdot) B}(x)=$ $\sin \frac{1}{2}\left(-\left(c_{1} k+m d_{1}\right)+k m \sqrt{\left(\frac{d_{1}}{k}+\frac{c_{1}}{m}\right)^{2}-\frac{4}{k m}\left(c_{1} d_{1}-x\right)}\right)$ if $\quad c_{1} d_{1} \leq x<\frac{\pi^{2}}{k m}+\left(\frac{d_{1}}{k}+\frac{c_{1}}{m}\right) \pi+c_{1} d_{1}-d_{1}$. Thus $A(\cdot) B=<c_{1} d_{1}, c_{2} d_{2}, c_{3} d_{3}>$.
4. Division : Since
$A_{\alpha}(/) B_{\alpha}=\left[\frac{a_{1}^{(\alpha)}}{b_{2}^{(\alpha)}}, \frac{a_{2}^{(\alpha)}}{b_{1}^{(\alpha)}}\right]$

$$
=\left[\frac{\frac{1}{k} \sin ^{-1} \alpha+c_{1}}{-\frac{1}{m} \sin ^{-1} \alpha+\frac{\pi}{m}+d_{1}}, \frac{-\frac{1}{k} \sin ^{-1} \alpha+c_{1}+\frac{\pi}{k}}{\frac{1}{m} \sin ^{-1} \alpha+d_{1}}\right],
$$

we have $\mu_{A(/) B}(x)=0$ on the interval $\left[\frac{c_{1} m}{\pi+d_{1} m}, \frac{\pi+c_{1} k}{k d_{1}}\right]^{c}=\left[\frac{c_{1}}{d_{3}}, \frac{c_{3}}{d_{1}}\right]^{c}$ and $\mu_{A(/) B}(x)=1 \quad$ at $x=\frac{m\left(\pi+2 c_{1} k\right)}{k\left(\pi+2 d_{1} m\right)}=\frac{c_{2}}{d_{2}}$. Hence $\quad \mu_{A(/) B}(x)=0 \quad$ if $x<\frac{c_{1} m}{\pi+m d_{1}}, \frac{\pi+c_{1} k}{k d_{1}} \leq x \quad$ and $\quad \mu_{A(/) B}(x)=$ $\sin \frac{k m\left(\left(\frac{\pi}{m}+d_{1}\right) x-c_{1}\right)}{k x+m}$ if $\frac{c_{1} m}{\pi+m d_{1}} \leq x<\frac{\pi+c_{1} k}{k d_{1}}-d_{1}$. Thus $A(/) B=<\frac{c_{1}}{d_{3}}, \frac{c_{2}}{d_{2}}, \frac{c_{3}}{d_{1}}>$.

Example 2.6. ([5]) For two trigonometric fuzzy numbers $A=<\frac{\pi}{3}, \frac{5 \pi}{6}, \frac{4 \pi}{3}>$ and $B=<\frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}>$, we can calculate exactly the above four operations using α-cuts.

$$
\mu_{A(+) B}(x)=\left\{\begin{array}{cc}
0, & x<\frac{7}{12} \pi, \frac{25}{12} \pi \leq x, \\
\sin \frac{2}{3}\left(x-\frac{7}{12} \pi\right), & \frac{7}{12} \pi \leq x<\frac{25}{12} \pi .
\end{array}\right.
$$

$$
\mu_{A(-) B}(x)=\left\{\begin{array}{cc}
0, & x<-\frac{5}{12} \pi, \frac{13}{12} \pi \leq x \\
\sin \frac{2}{3}\left(x+\frac{5}{12} \pi\right), & -\frac{5}{12} \pi \leq x<\frac{13}{12} \pi
\end{array}\right.
$$

$$
\mu_{A(\cdot) B}(x)=\left\{\begin{array}{cl}
0, & x<\frac{\pi^{2}}{12}, \pi^{2} \leq x, \\
\sin \left(-\frac{5}{12} \pi+\sqrt{\frac{\pi^{2}}{144}+2 x}\right), & , \frac{\pi^{2}}{12} \leq x<\pi^{2} .
\end{array}\right.
$$

$$
\mu_{A(/) B}(x)=\left\{\begin{array}{cl}
0, & x<\frac{4}{9}, \frac{16}{3} \leq x \\
\sin \frac{9 \pi x-4 \pi}{6 x+12}, & \frac{4}{9} \leq x<\frac{16}{3}
\end{array}\right.
$$

We define the generalized trigonometric fuzzy set. A generalized trigonometric fuzzy set is symmetric and may not have value 1 .

Definition 2.7. A generalized trigonometric fuzzy set is a fuzzy set A that has a membership function

$$
\mu_{A}(x)=\left\{\begin{array}{cl}
0, & x<c, c+\frac{\pi}{m} \leq x, \\
k \sin m(x-c), & x<c+\frac{\pi}{m},
\end{array}\right.
$$

where $0<k<1$ and m, c are positive constants.

The above generalized trigonometric fuzzy set is denoted by $A=<k, m, c>$. Note that $\mu_{A}\left(\frac{\pi+2 c}{2 m}\right)=k$. We define $\sin ^{-1}(\cdot)$ as an inverse of $\sin (\cdot):\left[0, \frac{\pi}{2}\right] \rightarrow[0,1]$.

3. Normal and exponential fuzzy probability for generalized trigonometric fuzzy sets

We derived the explicit formula for the normal fuzzy probability for a trigonometric fuzzy number and give examples.

Theorem 3.1. ([5]) Let $A=<\theta_{1}, \theta_{2}, \theta_{3}>$ be a trigonometric fuzzy number and $X \sim N\left(m, \sigma^{2}\right)$. Then the normal fuzzy probability is

$$
\begin{array}{r}
\tilde{P}(A)=\int_{\theta_{1}}^{\theta_{3}} \sin x \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}} d x=-\frac{1}{4} e^{-\frac{m^{2}}{2 \sigma^{2}}} \\
\times\left(\operatorname { e x p } (\frac { m ^ { 2 } - 2 i m \sigma ^ { 2 } - \sigma ^ { 4 } } { 2 \sigma ^ { 2 } }) \left(\operatorname{Erf}\left(\frac{-m+i \sigma^{2}+\theta_{3}}{\sqrt{2} \sigma}\right)\right.\right. \\
\left.\quad-\operatorname{Erf}\left(\frac{-m+i \sigma^{2}+\theta_{1}}{\sqrt{2} \sigma}\right)\right) \\
+\exp \left(\frac{m^{2}+2 i m \sigma^{2}-\sigma^{4}}{2 \sigma^{2}}\right)\left(\operatorname{Erf}\left(\frac{m+i \sigma^{2}-\theta_{3}}{\sqrt{2} \sigma}\right)\right. \\
\left.\left.-\operatorname{Erf}\left(\frac{m+i \sigma^{2}-\theta_{1}}{\sqrt{2} \sigma}\right)\right)\right)
\end{array}
$$

where $\operatorname{Erf}(x)=\frac{2}{i \sqrt{\pi}} \int_{0}^{i x} \exp \left(-z^{2}\right) d z$.
Example 3.2. ([5]) In the case of the trigonometric fuzzy number $A=<0, \frac{\pi}{2}, \pi>$, the normal fuzzy probability with respect to $X \sim N\left(3,2^{2}\right)$ is 0.3003.

$$
\begin{aligned}
\tilde{P}(A)= & \int_{0}^{\pi} \sin x \frac{1}{2 \sqrt{2 \pi}} e^{-\frac{(x-3)^{2}}{8}} d x \\
= & -\frac{1}{4} e^{-\frac{9}{8}}\left[e^{-\frac{7}{8}+3 i} \operatorname{Erf}\left(\frac{-3-4 i+x}{2 \sqrt{2}}\right)\right. \\
& \left.\quad-e^{-\frac{7}{8}-3 i} \operatorname{Erf}\left(\frac{-3+4 i+x}{2 \sqrt{2}}\right)\right]_{0}^{\pi} \\
= & 0.3003
\end{aligned}
$$

Example 3.3. ([5]) Let $X \sim N\left(3,2^{2}\right)$ and consider the fuzzy numbers in Example 2.6.

1. Multiplication

$$
\begin{aligned}
\tilde{P} & =\int_{\frac{\pi^{2}}{12}}^{\pi^{2}} \sin \left(-\frac{5}{12} \pi+\sqrt{\frac{\pi^{2}}{144}+2 x}\right) \frac{1}{2 \sqrt{2 \pi}} e^{-\frac{(x-3)^{2}}{8}} d x \\
& =0.6807
\end{aligned}
$$

2. Division

$$
\tilde{P}=\int_{\frac{4}{9}}^{\frac{16}{3}} \sin \left(\frac{9 \pi x-4 \pi}{6 x+12}\right) \frac{1}{2 \sqrt{2 \pi}} e^{-\frac{(x-3)^{2}}{8}} d x=0.4245
$$

In this section, we derive the explicit formula for the normal fuzzy probability for generalized trigonometric fuzzy sets and give some examples.

Theorem 3.4. Let $X \sim N\left(a, \sigma^{2}\right)$ and $A=<k, m, c>$ be generalized trigonometric fuzzy set. Then the normal fuzzy probability of a generalized trigonometric fuzzy set A is

$$
\begin{aligned}
\tilde{P}(A)= & \frac{k m}{2 \sqrt{2 \pi}} \sin \left(2 \sigma \left(\exp \left(-\frac{-(a-c)^{2}}{2 \sigma^{2}}\right)\right.\right. \\
& \left.-\exp \left(-\frac{\left(-a+c+\frac{\pi}{m}\right)^{2}}{2 \sigma^{2}}\right)\right) \\
& \left.+(a-c) \sqrt{2 \pi}\left(\operatorname{Erf}\left(\frac{a-c}{\sqrt{2} \sigma}\right)-\operatorname{Erf}\left(\frac{a-c-\frac{\pi}{m}}{\sqrt{2} \sigma}\right)\right)\right)
\end{aligned}
$$

Example 3.5. Let $A=<\frac{2}{3}, \frac{1}{2}, \pi>$ be generalized trigonometric fuzzy set. Then the normal fuzzy probability of A with respect to $X \sim N\left(6,1^{2}\right)$ is

$$
\begin{aligned}
\tilde{P}(A) & =\frac{2}{3 \sqrt{2 \pi}} \int_{\pi}^{3 \pi} \sin \frac{1}{2}(x-\pi) \exp \left(-\frac{(x-6)^{2}}{2}\right) d x \\
& =0.5827+1.2760 \times 10^{-17} i
\end{aligned}
$$

Theorem 3.6. Let $X \sim E(\lambda)$ and $A=<k, m, c>$ be generalized trigonometric fuzzy set. Then the exponential fuzzy probability of a generalized trigonometric fuzzy set A is

$$
\tilde{P}(A)=\frac{k m}{\lambda+k m^{2}}\left(e^{-\lambda\left(c+\frac{\pi}{m}\right)}+e^{-\lambda c}\right)
$$

Proof. Since

$$
\mu_{A}(x)=\left\{\begin{array}{cl}
0, & x<c, c+\frac{\pi}{m} \leq x, \\
k \sin m(x-c), & x<c+\frac{\pi}{m},
\end{array}\right.
$$

where $0<k<1$ and m, c are positive constants, we have

$$
\begin{aligned}
\tilde{P}(A)= & \int_{R} \mu_{A}(x) d P_{X} \\
= & k \lambda \int_{c}^{c+\frac{\pi}{m}} \sin m(x-c) e^{-\lambda x} d x \\
= & -k\left[e^{-\lambda x} \sin m(x-c)\right]_{c}^{c+\frac{\pi}{m}} \\
& +k m \int_{c}^{c+\frac{\pi}{m}} \cos m(x-c) e^{-\lambda x} d x \\
= & k m \int_{c}^{c+\frac{\pi}{m}} \cos m(x-c) e^{-\lambda x} d x .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \int_{c}^{c+\frac{\pi}{m}} \cos m(x-c) e^{-\lambda x} d x \\
&= {\left[-\frac{1}{\lambda} e^{-\lambda x} \cos m(x-c)\right]_{c}^{c+\frac{\pi}{m}} } \\
&-\frac{m}{\lambda} \int_{c}^{c+\frac{\pi}{m}} \sin m(x-c) e^{-\lambda x} d x \\
&= \frac{1}{\lambda}\left(e^{-\lambda\left(c+\frac{\pi}{m}\right)}+e^{-\lambda c}\right) \\
&-\frac{m}{\lambda} \int_{c}^{c+\frac{\pi}{m}} \sin m(x-c) e^{-\lambda x} d x,
\end{aligned}
$$

we have

$$
\tilde{P}(A)=\frac{k m}{\lambda}\left(e^{-\lambda\left(c+\frac{\pi}{m}\right)}+e^{-\lambda c}\right)-\frac{k m^{2}}{\lambda} \tilde{P}(A) .
$$

Thus

$$
\tilde{P}(A)=\frac{k m}{\lambda+k m^{2}}\left(e^{-\lambda\left(c+\frac{\pi}{m}\right)}+e^{-\lambda c}\right)
$$

Example 3.7. Let $A=<\frac{2}{3}, \frac{1}{2}, 0>$ be generalized trigonometric fuzzy set. Then the exponential fuzzy probability of A with respect to $X \sim E(2)$ is

$$
\begin{aligned}
\tilde{P}(A) & =\frac{4}{3} \int_{0}^{2 \pi} \sin \frac{x}{2} \exp (-2 x) d x \\
& =0.1569
\end{aligned}
$$

References

[1] C. Kang and Y. S. Yun, Normal fuzzy probability for generalized triangular fuzzy sets, Journal of fuzzy logic and intelligent systems, vol. 22, no. 2, pp. 212-218, 2012.
[2] Y. S. Yun, K. H. Kang and J. W. Park, The concept of σ-morphism as a probability measure on the set of effects, Journal of fuzzy logic and intelligent systems, vol. 19, no. 3, pp. 371-374, 2009.
[3] Y. S. Yun and J. W. Park, The generalized trigonometric fuzzy sets for the fundamental operations based on the Zadeh's principle, to appear in Far East Journal of Mathematical Sciences.
[4] Y. S. Yun, J. C. Song and J. W. Park, Normal fuzzy probability for quadratic fuzzy number, Journal of fuzzy logic and intelligent systems, vol. 15, no. 3, pp. 277-281, 2005.
[5] Y. S. Yun, J. C. Song and S. U. Ryu, Normal fuzzy probability for trigonometric fuzzy number, Journal of applied mathematics and computing, vol. 19, no. 1-2, pp. 513-520, 2005.
[6] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning - I, Information Sciences, vol. 8, pp. 199-249, 1975.
[7] L. A. Zadeh, Probability measures of fuzzy events, J. Math. Anal. Appl., vol. 23, pp. 421-427, 1968.

저 자 소 개

조윤동 (Yun Dong Jo)
2005 - 현재 한국교육과정평가원 연구원

관심분야 : Mathematics Education, Statistics
Phone : +82-2-3704-3801
E-mail : jydong05@kice.re.kr

윤용식 (Yong Sik Yun)
2006 - 현재 제주대학교 수학과 교수

관심분야: Fuzzy Probability, Probability Theory
Phone : +82-64-754-3565
E-mail : yunys@jejunu.ac.kr

[^0]: 접수일자: 2014년 6월 9일
 심사(수정)일자: 2014년 6월 20일
 게재확정일자 : 2014년 6월 23일
 \dagger Corresponding author : Yong Sik Yun
 **This work was supported by the 2014 scientific promotion program funded by Jeju National University.
 This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

