DOI QR코드

DOI QR Code

글리세롤을 이용한 복합영양소에서 Chlorella sp., Nannochloris sp.와 Botryococcus braunii 의 바이오매스 생산량과 오일 함유량 비교

Comparison of Biomass and Oil Content of Chlorella sp., Nannochloris sp., and Botryococcus braunii in the Mixotrophic Conditions using Glycerol

  • 최희정 (가톨릭 관동대학교 보건환경학과)
  • Choi, Hee-Jeong (Department of Health and Environment, Catholic Kwandong University)
  • 투고 : 2014.05.07
  • 심사 : 2014.06.24
  • 발행 : 2014.09.30

초록

The focus of this study was to observe the growth of Chlorella sp., Nannochloris sp., and Botryococcus braunii under mixotrophic conditions (i.e., added glycerol) with the aim of increasing the growth of biomass and algae oil content. A significant growth of biomass was obtained when grown in glycerol rich environment comparing to autotrophic conditions. 5 g/L glycerol yielded the highest biomass concentration for these strains. Mixotrophic conditions improved both the growth of the microalgae and the accumulation of triacylglycerols (TAGs). The maximum amount of TAG in Botryococcus braunii was reached in the growth medium with 10 g/L glycerol and Chlorella sp., Nannochloris sp. with 2 g/L glycerol. The content of saturated fatty acids of Chlorella sp., Nannochloris sp., and Botryococcus braunii was found to be 34.94, 14.23 and 13.39%, and the amount of unsaturated fatty acids was 65.06, 85.78 and 86.61% of total fatty acids, respectively. The fatty acid profiles of the oil for the culture possibility met the necessary requirements and are, therefore, promising resource for biofuel production.

키워드

참고문헌

  1. Andrade, M. R. and Costa, J. A. V. (2007). Mixotrophic Cultivation of Microalga Spirulina platensis using Molasses as Organic Substrate, Aquaculture, 264(1-4), pp. 130-134. https://doi.org/10.1016/j.aquaculture.2006.11.021
  2. AOCS Official Method (Cd 3d-63). (2003). Acid Value, Official Methods and Recommended Practices of the AOCS, Fifth Edn. AOCS, Champaign, Illinois.
  3. Brennan, L. and Owende, P. (2010). Biofuels from Microalgae - A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products, Renewable and Sustainable Energy Reviews, 14(2), pp. 557-577. https://doi.org/10.1016/j.rser.2009.10.009
  4. Biller, P., Friedman, C., and Ross, A. B. (2013). Hydrothermal Microwave Processing of Microalgae as a Pre-treatment and Extraction Technique for Bio-fuels and Bio-products, Bioresource Technology, 136, pp. 188-195. https://doi.org/10.1016/j.biortech.2013.02.088
  5. Cagliari, A., Margis, R., Maraschin, F. S., Turchetto-Zolet, A. C., Loss, G., and Margis-Pinheiro, M. (2011). Biosynthesis of Triacylglycerols in Plants and Algae, International Journal of Plant Biology, 2(e10), pp. 40-52. doi:10.4081/pb.2011.e10
  6. CEN, EN 14103. (2011). Fat and Oil Derivatives - Fatty Acid Methyl Esters (FAME) - Determination of Ester and Linolenic Acid Methylester Contents, ONORM, Wien.
  7. Chisti, Y. (2007). Biodiesel from Microalgae, Biotechnology Advances, 25(3), pp. 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  8. Choi, H. J., Lee, J. M., and Lee, S. M. (2013). A Novel Optical Panel Photobiorector for Cultivation of Microalgae, Water Science and Technology, 67(11), pp. 2543-2548. https://doi.org/10.2166/wst.2013.128
  9. Choi, H. J. and Lee, S. M. (2014). Effect of Optical Panel Thickness for Nutrient Removal and Cultivation of Microalgae in the Photobioreactor, Bioprocess and Biosystems Engineering, 37(4), pp. 697-705. https://doi.org/10.1007/s00449-013-1039-7
  10. Chojnacka, K. and Noworyta, A. (2004). Evaluation of Spirulina sp. Growth in Photoautotrophic, Heterotrophic and Mixotrophic Cultures, Enzyme and Microbial Technology, 34(5), pp. 461-465. https://doi.org/10.1016/j.enzmictec.2003.12.002
  11. Demirbas, A. (2009). Production of Biodiesel from Algae Oils, Energy Source, Part A, 31(2), pp. 163-168.
  12. Gong, J. and Jiang, M. (2011). Biodiesel Production with Microalgae as Feedstock: from Strains to Biodiesel, Biotechnology Letters, 33(7), pp. 1269-1284. https://doi.org/10.1007/s10529-011-0574-z
  13. Halim, R., Danquah, M. K., and Webley, P. A. (2012). Extraction of Oil from Microalgae of Biodiesel Production: A Review, Biotechnology Advances, 30(3), pp. 709-732. https://doi.org/10.1016/j.biotechadv.2012.01.001
  14. Hsieh, C. H. and Wu, W. T. (2009). A Novel Photpbioreactor with Transparent Rectangular Chambers for Cultivation of Microalgae, Biochemical Engineering Journal, 46(3), pp. 300-305. https://doi.org/10.1016/j.bej.2009.06.004
  15. Kong, W. B., Yang, H., Cao, Y. T., Song, H., Hua, S. F., and Xia, C. G. (2013). Effects of Glycerol and Glucose on the Enhancement of Biomass, Lipid and Soluble Carbohydrate Production by Chlorella vulgaris, Food Technology and Biotechnology, 51, pp. 62-69.
  16. Lee, Y. C., Huh, Y. S., Farooq, W., Chung, J., Han, J. I., Shin, H. J., Jeong, S. H., Lee, J. S., Oh, Y. K., and Park, J. Y. (2013). Lipid Extractions from Docosahexaenoic Acid (DHA)-rich and Oleaginous Chlorella sp. Biomasses by Organicnanoclays, Bioresource Technology, 137, pp. 74-81. https://doi.org/10.1016/j.biortech.2013.03.090
  17. Lepage, G. and Roy, C. C. (1984). Improved Recovery of Fatty Acid through direct Transesterification without Prior Extraction or Purification, Journal of Lipid Research, 25(12), pp. 1391-1396.
  18. Li, X., Xu, H., and Wu, Q. (2007). Large-Scale Biodiesel Production from Microalga Chlorella protothecoides through Heterotrophic Cultivation in Bioreactors, Biotechnology and Bioengineering, 98(4), pp. 764-771. https://doi.org/10.1002/bit.21489
  19. Mata, T. M., Martins, A. A., and Caetano, N. S. (2012). Microalgae for Biodiesel Production and Other Applications; A Review, Renewable and Sustainable Energy Reviews, 14(1), pp. 217-232.
  20. Moreno-Garrido, I. (2008). Microalgae Immobilization: Current Techniques and Uses, Bioresource Technology, 99(10), pp. 3949-3964. https://doi.org/10.1016/j.biortech.2007.05.040
  21. Msanne, J., Xu, D., Konda, A. R., Casas-Mollano, J. A., Awada, T., Cahoon, E. B., and Cerutti, H. (2012). Metabolic and Gene Expression Changes Triggered by Nitrogen Deprivation in the Photoautotrophically Grown Microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169, Phytochemistry, 75, pp. 50-59. https://doi.org/10.1016/j.phytochem.2011.12.007
  22. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O., and Kankamer, B. (2008). Second Generation Biofuels: High Efficiency Microalgae for Biodiesel Production, Bioenergy Research, 1(1), pp. 20-43. https://doi.org/10.1007/s12155-008-9008-8
  23. Sierra, E., Acien, F. G., Fernandez, J. M., Garcia, J. L., Gonzalez, C., and Molina, E. (2008). Characterization of a Flat Plate Photobioreactor for the Production of Microalgae, Chemical Engineering Journal, 138(1-3), pp. 136-147. https://doi.org/10.1016/j.cej.2007.06.004
  24. Stainier, R. Y., Kunisawa, R., Mandel, M., and Choen, B. (1971). Purification and Properties of a Unicellular Blue-green Alga (order Chroococcales), Bacteriological Reviews, 35(2), pp. 171-205.
  25. Wijffels, R. H. and Barbosa, M. J. (2010). An Outlook on Microalgal Biofuels, Science, 329(5993), pp. 796-799. https://doi.org/10.1126/science.1189003
  26. Xu, H., Miao, X., and Wu, Q. (2006). High Quality Biodiesel Production from a Microalga Chlorella Protothecoides by Heterotrophic Growth in Fermenters, Journal of Biotechnology, 126(4), pp. 499-507. https://doi.org/10.1016/j.jbiotec.2006.05.002

피인용 문헌

  1. A Comparative Study on Microalgae Recovery Rates in Response to Different Low Cost Bio-flocculant Applications vol.31, pp.6, 2015, https://doi.org/10.15681/KSWE.2015.31.6.625