DOI QR코드

DOI QR Code

N-Doped ZnO Nanoparticle-Carbon Nanofiber Composites for Use as Low-Cost Counter Electrode in Dye-Sensitized Solar Cells

염료감응형 태양전지의 저비용 상대전극을 위한 N-doped ZnO 나노입자-탄소나노섬유 복합체

  • An, Ha-Rim (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 안하림 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2014.08.05
  • Accepted : 2014.09.25
  • Published : 2014.10.27

Abstract

Nitrogen-doped ZnO nanoparticle-carbon nanofiber composites were prepared using electrospinning. As the relative amounts of N-doped ZnO nanoparticles in the composites were controlled to levels of 3.4, 9.6, and 13.8 wt%, the morphological, structural, and chemical properties of the composites were characterized by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, the carbon nanofiber composites containing 13.8 wt% N-doped ZnO nanoparticles exhibited superior catalytic properties, making them suitable for use as counter electrodes in dye-sensitized solar cells (DSSCs). This result can be attributed to the enhanced surface roughness of the composites, which offers sites for $I_3{^-}$ ion reductions and the formation of Zn3N2 phases that facilitate electron transfer. Therefore, DSSCs fabricated with 13.8 wt% N-doped ZnO nanoparticle-carbon nanofiber composites showed high current density ($16.3mA/cm^2$), high fill factor (57.8%), and excellent power-conversion efficiency (6.69%); at the same time, these DSSCs displayed power-conversion efficiency almost identical to that of DSSCs fabricated with a pure Pt counter electrode (6.57%).

Keywords

References

  1. N. -G. Park, J. Korean Ind. Eng. Chem., 15, 265 (2004).
  2. T. Bessho, S. M. Zakeeruddin, C. -Y. Yeh, E. -G. Diau and M. Gratzel, Angew. Chem. Int. Ed., 49, 6646 (2010). https://doi.org/10.1002/anie.201002118
  3. W. Maiaugree, S. Pimanpang, M. Towannang, S. Saekow, W. Jarernhoo and V. Amornkitbarmarung, J. Non-Cryst. Solids, 358, 2489 (2012). https://doi.org/10.1016/j.jnoncrysol.2011.12.104
  4. M-H. Kim, H. Lee and Y. -K. Jeoung, J. Kor. Powd. Met. Inst., 17, 449 (2010). https://doi.org/10.4150/KPMI.2010.17.6.449
  5. L. S. Mende, U. Bach, R. H. Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida and M. Gratzel, Adv. Mater., 17, 813 (2005). https://doi.org/10.1002/adma.200401410
  6. Y. Han, S. Hwang, M. Kang, Y. Kim, H. Kim, S. Kim. H. Bae, H. Chol and M. Jeon, J. KIEEME, 24, 333 (2011).
  7. J. -Y. Lin, J. -H. Liao and T. -C. Wei, Electrochem. Solid-State Lett, 14, D41 (2011). https://doi.org/10.1149/1.3533917
  8. J. -L. Lan, Y. -Y. Wang, C. -C. Wan, T. -C. Wei, H. - P. Feng, C. Peng, H. -P. Cheng, Y. -H. Chang and W. - C. Hsu, Curr. Appl. Phys., 10, S168 (2010). https://doi.org/10.1016/j.cap.2009.11.064
  9. J. Lim, S. Y. Ryu, J. Kim and Y. Jun, Nanoscale Res. Lett., 8, 227 (2013). https://doi.org/10.1186/1556-276X-8-227
  10. S. Yun, L. Wang, W. Guo and T. Ma, Electrochem. Commum., 24, 69 (2012). https://doi.org/10.1016/j.elecom.2012.08.008
  11. G. -R. Li, F. Wang, Q. -W. Jiang, X. -P. Gao and P. - W. Shen, Angew. Chem. Int. Ed., 49, 3653 (2010). https://doi.org/10.1002/anie.201000659
  12. P. Joshi, Y. Xie, M. Ropp, D. Galipeau, S. Bailey and Q. Qiao, Energy Environ. Sci., 2, 426 (2009). https://doi.org/10.1039/b815947p
  13. S. -H. Yoo, A. Walsh, D. O. Scanlon and A. Soon, RSC Adv., 4, 3306 (2014). https://doi.org/10.1039/c3ra46558f
  14. B. Zhang, M. Li, J. -Z. Wang and L. -Q. Shi, Chin. Phys. Lett, 30, 027303 (2013). https://doi.org/10.1088/0256-307X/30/2/027303
  15. H. -R. An, H. L. An, W. -B. Kim and H. -J. Ahn, Electrochem. Solid-State Lett, 3, M33 (2014). https://doi.org/10.1149/2.0061408ssl
  16. B. Yang, P. Feng, A. Kumar, R. S. Katiyar and M. Achermann, J. Phys. D: Appl. Phys., 42 195402 (2009) https://doi.org/10.1088/0022-3727/42/19/195402
  17. S. Ameen, M. S. Akhtar, Y. S. Kim, O. -B. Yang and H. -S. Shin, J. Phys. Chem. C, 114, 4760 (2010). https://doi.org/10.1021/jp912037w
  18. L. -C. Chen, K. -J. Lee, J. -H. Chen, T. -C. Pan and C. -M. Huang, Electrochem. Acta., 112, 698 (2013). https://doi.org/10.1016/j.electacta.2013.09.023
  19. K. Chen, B. Li, J. Zheng, J. Zhao, H. Jing and Z. Zhu, Electrochem. Acta. 56, 4624 (2011). https://doi.org/10.1016/j.electacta.2011.02.097
  20. K. Imoto, K. Takahashi, T. Yanaguchi, J. Nakamura and K. Murata, Sol. Energy Mater. Sol. Cells, 79, 459 (2003). https://doi.org/10.1016/S0927-0248(03)00021-7
  21. M. Gratzel, J. Photochem. Photobiol. C, 4, 145 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1

Cited by

  1. Co-Embedded Graphitic Porous Carbon Nanofibers for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells vol.25, pp.12, 2015, https://doi.org/10.3740/MRSK.2015.25.12.672
  2. Ni Nanoparticles-Graphitic Carbon Nanofiber Composites for Pt-Free Counter Electrode in Dye-Sensitized Solar Cells vol.26, pp.11, 2016, https://doi.org/10.3740/MRSK.2016.26.11.649