DOI QR코드

DOI QR Code

Size Distributions of Amphiboles in Soils from a Closed Asbestos Mine, Jecheon, Chungcheongbuk-do, Korea

충청북도 제천시 폐석면광산 주변 토양에서 검출되는 각섬석의 크기 분포

  • Kwon, Jiwoon (Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency) ;
  • Choi, Sung Won (Department of Preventive Medicine, College of Medicine, The Catholic University of Korea) ;
  • Kim, Hyunwook (Department of Preventive Medicine, College of Medicine, The Catholic University of Korea)
  • 권지운 (한국산업안전보건공단 산업안전보건연구원) ;
  • 최성원 (가톨릭대학교 의과대학 예방의학교실) ;
  • 김현욱 (가톨릭대학교 의과대학 예방의학교실)
  • Received : 2014.09.01
  • Accepted : 2014.10.17
  • Published : 2014.10.28

Abstract

This study is for discrimination between asbestiform and non-asbestiform based on size characteristics of tremolite-actinolite fibers in soils from a closed asbestos mine, Jecheon, Chungcheongbuk-do, Korea. Soils and tremolite asbestos rocks were collected from a closed asbestos mine area. The dimensions of fibers with minimum $5{\mu}m$ in length and 3:1 in aspect ratio were measured using transmission electron microscopy (TEM) and compared to the known tremolite populations ranging from asbestiform to non-asbestiform. The geometric means of width of soils, asbestos rocks and National Institute for Standard and Technology (NIST) and Health and Safety Laboratory (HSL) reference samples were $1.2{\mu}m$, $0.3-0.6{\mu}m$, $1.3{\mu}m$ and $0.2{\mu}m$, respectively. The geometric means of aspect ratio of soils, asbestos rocks and NIST and HSL reference samples were 7.3, 13.7-30.1, 7.2 and 37.8, respectively. The population of tremolite-actinolite fibers from soils compared to known asbestiform and non-asbestiform tremolite was lack of thin and high aspect ratio fibers. Upper results suggest that tremolite-actinolite fibers in soils cannot be classified into a commercial grade asbestos. The tremolite-actinolite fibers do not mainly appear to be the result of contamination from distance asbestos sources by wind. For the management and control of asbestos in soils, size distributions of amphiboles should be incorporated into asbestos survey results of soils.

본 연구는 석면형태와 비석면형태의 구분을 위하여 충청북도 제천시에 소재한 한 폐석면광산 지역의 토양 중 트레모라이트와 악티노라이트 섬유의 크기 특성을 파악하였다. 폐석면광산 주변지역의 토양과 트레모라이트 석면 암석을 채취하고, 투과전자현미경으로 길이 $5{\mu}m$ 이상이며 길이대너비 비율이 3:1 이상인 섬유의 크기를 측정하여 알려진 석면형태와 비석면형태를 보이는 트레모라이트의 크기 분포와 비교하였다. 연구 결과 섬유의 너비는 기하평균으로 토양시료 $1.2{\mu}m$, 석면 암석 $0.3-0.6{\mu}m$, NIST 트레모라이트 $1.3{\mu}m$, HSL 트레모라이트 $0.2{\mu}m$ 이었다. 길이대너비 비율은 기하평균으로 토양시료 7.3, 석면 암석 13.7-30.1, NIST 트레모라이트 7.2, HSL 트레모라이트 37.8 이었다. 토양시료는 알려진 석면형태의 트레모라이트 뿐만 아니라 비석면형태의 트레모라이트에 비해서도 가늘고 길이대너비 비율이 큰 섬유를 적게 함유하였다. 따라서 연구 대상 토양시료 중의 트레모라이트-악티노라이트는 전형적 석면형태로 분류할 수 없으며, 대부분은 광산 및 채석장으로부터 바람에 의해 비산된 석면으로 인한 오염의 결과가 아닌 것으로 추정된다. 토양 중 석면의 관리를 위해서 석면 오염 여부를 조사 시에는 감섬석의 크기 분포가 함께 고려되어야 한다.

Keywords

References

  1. Addison J. and McConnell E.E. (2008) A review of carcinogenicity studies of asbestos and non-asbestos tremolite and other amphiboles. Regul. Toxicol. Pharmacol., v.52, n.1, p.S187-S199. https://doi.org/10.1016/j.yrtph.2007.10.001
  2. Brown, B.M. and Gunter M.E. (2003) Morphological and optical characterization of amphiboles from Libby, Montana U.S.A. by spindle stage assisted - polarized light microscopy. Microscope, v.51, n.3, p.121-140.
  3. California Environmental Protection Agency. (1991) Determination of asbestos content of serpentine aggregate. California Environmental Protection Agency Air Resources Board Method 435.
  4. Campbell W.J., Blake R.L., Brown L.L., Cather E.E. and Sjoberg J.J. (1977) Selected silicate minerals and their asbestiform varieties: Mineralogical definitions and identification-characterization. US Department of the Interior, Bureau of Mines Information Circular. IC 8751.
  5. Chatfield E.J. (2008) A procedure for quantitative description of fibrosity in amphibole minerals: in 2008 Johnson Conference.
  6. Davis J.M.G., Addison J., McIntosh C., Miller B.G. and Niven K. (1991) Variations in the carcinogenicity of tremolite dust samples of differing morphology. Ann. N. Y. Acad. Sci., v.643, p.473-490. https://doi.org/10.1111/j.1749-6632.1991.tb24497.x
  7. Deer W.A., Howie R.A. and Zussman J. (1992) An introduction to the rock-forming minerals. Longman Scientific and Technical, 2nd Ed, ISBN 0470218096, p.223.
  8. Gamble J. (1993) A nested case control study of lung cancer among New York talc workers. Int. Arch. Occup. Environ. Health, v.64, n.6, p.449-56. https://doi.org/10.1007/BF00517952
  9. Gamble J. and Gibbs G.W. (2008) An evaluation of the risks of lung cancer and mesothelioma from exposure to amphibole cleavage fragments. Regul. Toxicol. Pharmacol., v.52, n.1, p.S154-S186. https://doi.org/10.1016/j.yrtph.2007.09.020
  10. Harper M. (2008) 10th Anniversary Critical Review: Naturally occurring asbestos. J. Environ. Monit., v.10, n.12, p.1394-1408. https://doi.org/10.1039/b810541n
  11. Honda Y., Beall C., Delzell E., Oestenstad K., Brill I. and Mathews R. (2002) Mortality among workers at a talc mining and milling facility. Ann. Occup. Hyg., v.46, n.7, p.575-585. https://doi.org/10.1093/annhyg/mef075
  12. International Mineral Association. (2014) List of mineral. Available at: http://www.ima-mineralogy.org/Minlist.htm (Accessed August 25 2014).
  13. International Organization for Standardization. (1995) Ambient air - Determination of asbestos fibres - direct-transfer transmission electron microscopy method. ISO 10312.
  14. International Organization for Standardization. (2012) Air quality - Bulk materials - Part 1: Sampling and qualitative determination of asbestos in commercial bulk materials. ISO 22262-1.
  15. Januch J., Brattin W., Woodburyc L. and Berry D. (2013) Evaluation of a fluidized bed asbestos segregator preparation method for the analysis of low-levels of asbestos in soil and other solid media. Anal. Methods, n.5, p.1658-1668.
  16. Jeong G.Y. and Choi J.B. (2012) Morphological diversity of tremolite-actinolite series amphiboles with implications to the evaluation of naturally occurring asbestos. J. Mineral. Soc. Korea, v.25, n.2, p.95-104 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2012.25.2.095
  17. Kelse J.W. and Thompson C.S. (1989) The regulatory and mineralogical definitions of asbestos and their impact on amphibole dust analysis. Am. Ind. Hyg. Assoc. J., v.50, n.11, p.613-622. https://doi.org/10.1080/15298668991375245
  18. Kim S.J. (1988) All forms of tremolite are asbestos?. Mineral and Industry, v.1, n.2, p.2008-2012 (in Korean).
  19. Lowers H. and Meeker G. (2002) Tabulation of asbestosrelated terminology. US Geological Survey, Open-File Report 02-458. Available at: http://pubs.usgs.gov/of/2002/ofr-02-458/OFR-02-458-508.pdf
  20. Ministry of Environment. (2011) Survey results on asbestos contamination of soil and underground water surrounding closed asbestos mines (Press release) (in Korean). Retrieved from http://www.me.go.kr/home/web/board/read.do?pagerOffset=30&maxPageItems=10&maxIndexPages=10&searchKey=title&searchValue=%ED%86%A0%EC%96%91&menuId=286&orgCd=&boardId=178402&boardMasterId=1&boardCategoryId=&decorator=
  21. Ministry of Environment. (2012) Confirmation of asbestos contamination of soils form areas surrounding closed asbestos mines (Press release) (in Korean). Retrieved from http://www.me.go.kr/home/web/board/read.do?pagerOffset=20&maxPageItems=10&maxIndexPages=10&searchKey=title&searchValue=%EC%84%9D%EB%A9%B4&menuId=286&orgCd=&boardId=181365&boardMasterId=1&boardCategoryId=&decorator=
  22. Ministry of Environment. (2013) Confirmation of asbestos contamination in closed asbestos mines in Chungcheongnam-do, Gyeongsangbuk-do and Gyeonggi-do (Press release) (in Korean). Retrieved from http://www.me.go.kr/home/web/board/read.do?pagerOffset=10&maxPageItems=10&maxIndexPages=10&searchKey=title&searchValue=%EC %84%9DEBA9%B4&menuId=286&orgCd=&boardId=185125&boardMasterId=1&boardCategoryId=&decorator=
  23. Ministry of Environment. (2014) Safe asbestos control act. Act 12460.
  24. Stanton M.F., Layard M., Tegeris A., Miller E., May M., Morgan E. and Smith A. (1981) Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J. Natl. Cancer Inst., v.67, n.5, p.965-975.
  25. US Environmental Protection Agency. (1986) The asbestos hazard emergency response act (AHERA) (Toxic substances control act (TSCA) title II). 15 U.S.C. $\S$ 2641-2656.
  26. US Environmental Protection Agency. (2001) Integrated Risk Information System - Asbestos (CASRN 1332-21-4). Available at: http://www.epa.gov/ncea/iris/subst/0371.htm (Accessed August 26 2014).
  27. US Mine Safety and Health Administration. (2008) Exposure limits for airborne contaminants. 30 CFR $\S$ 57.5001.
  28. US Occupational Safety and Health Administration. (1992) IV. Mineralogical considerations from regulations (preambles to final rules) - asbestos (1992 - Original). Available at: http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=PREAMBLES&p_id=785 (Accessed August 25 2014).
  29. Van Orden D.R., Lee R.J., Allison K.A. and Addison J. (2009) Width distributions of asbestos and non-asbestos amphibole minerals. Indoor Build Environ., 18, n.6, p.531-540. https://doi.org/10.1177/1420326X09341503
  30. Virta L. (2002) Asbestos: geology, mineralogy, mining, and uses. US Geological Survey, Open-File Report 02-149, p.5-6. Available at: http://pubs.usgs.gov/of/2002/of02-149/of02-149.pdf
  31. Wylie A.G., Bailey K.F., Kelse J.W. and Lee R.J. (1993) The importance of width in asbestos fiber carcinogenicity and its implications for public policy. Am. Ind. Hyg. Assoc. J., v.54, n.5, p.239-252. https://doi.org/10.1080/15298669391354621

Cited by

  1. Characteristics of Generated Fibrous/Particulate Matters from Asbestos-Containing Building Materials(ACBMs) vol.25, pp.2, 2015, https://doi.org/10.15269/JKSOEH.2015.25.2.184