DOI QR코드

DOI QR Code

Structural defects in the multicrystalline silicon ingot grown with the seed at the bottom of crucible

종자결정을 활용한 다결정 규소 잉곳 내의 구조적 결함 규명

  • Lee, A-Young (Department of Advanced Materials Science and Engineering, Incheon National University) ;
  • Kim, Young-Kwan (Department of Advanced Materials Science and Engineering, Incheon National University)
  • Received : 2014.08.21
  • Accepted : 2014.09.26
  • Published : 2014.10.31

Abstract

Because of the temperature gradient occurring during the growth of the ingot with directional solidification method, defects are generated and the residual stress is produced in the ingot. Changing the growth and cooling rate during the crystal growth process will be helpful for us to understand the defects and residual stress generation. The defects and residual stress can affect the properties of wafer. Generally, it was found that the size of grains and twin boundaries are smaller at the top area than at the bottom of the ingot regardless of growth and cooling condition. In addition to that, in the top area of silicon ingot, higher density of dislocation is observed to be present than in the bottom area of the silicon ingot. This observation implies that higher stress is imposed to the top area due to the faster cooling of silicon ingot after solidification process. In the ingot with slower growth rate, dislocation density was reduced and the TTV (Total Thickness Variation), saw mark, warp, and bow of wafer became lower. Therefore, optimum growth condition will help us to obtain high quality silicon ingot with low defect density and low residual stress.

방향성 응고법으로 잉곳을 성장시킬 때 발생하는 온도 구배에 의해 잉곳 내에 결함이 생성되고 잔류 응력이 남게 된다. 이 결함과 잔류 응력은 잉곳의 성장 조건에 따라 달라지며, 웨이퍼의 특성에 큰 영향을 미칠 수 있다. 성장 속도의 변화에 상관 없이 대부분의 잉곳에서는 하부 영역에 비해 상부 영역에서 결정립과 쌍정경계의 크기가 작았으며, 결정립계뿐만 아니라 결정립 내에도 전위 밀도가 높았다. 이것은 상부 영역에서 성장 중에 받는 열 응력이 하부 영역보다 크다는 것을 암시한다. 두 잉곳 간의 차이를 보았을 때에는 성장 속도가 느린 잉곳에서 전위 밀도가 감소하였으며, 웨이퍼의 평탄도, 뒤틀림, 휨, 절단자국이 낮게 측정되었다. 따라서 다결정 성장 공정에서는 냉각 속도가 결함이나 잔류 응력의 발생에 미치는 영향이 크며, 그로 인하여 웨이퍼의 특성이 달라지는 것을 알 수 있었다.

Keywords

References

  1. B. Gao, X.J. Chen, S. Nakano and K. Kakimoto, "Crystal growth of high-purity multicrystalline silicon using a unidirectional solidification furnace for solar cells", Journal of Crystal Growth 312 (2010) 1572. https://doi.org/10.1016/j.jcrysgro.2010.01.034
  2. A.Y. Lee, D.G. Lee and Y.K. Kim, "The current status in the silicon crystal growth technology for solar cells", Journal of the Korean Crystal Growth and Crystal Technology 24 (2014) 47. https://doi.org/10.6111/JKCGCT.2014.24.2.047
  3. H.J. Moller, C. Funke, M. Rinio and S. Scholz, "Multicrystalline silicon for solar cells", Thin Solid Films 487 (2005) 179. https://doi.org/10.1016/j.tsf.2005.01.061
  4. N. Chen, S. Qiu, B. Liu, G. Du, G. Liu and W. Sun, "An optical microscopy study of dislocations in multicrystalline silicon grown by directional solidification method", Materials Science in Semiconductor Processing 13 (2010) 276. https://doi.org/10.1016/j.mssp.2010.12.006
  5. J.W. Shur, J.H. Hwang, Y.J. Kim, S.J. Moon, W.W. So and D.H. Yoon, "Simulation by heat transfer of ADS process for large sized polycrystalline silicon ingot growth", Journal of the Korean Crystal Growth and Crystal Technology 18 (2008) 45.
  6. H.J. Su, J. Zhang, L. Liu and H.Z. Fu, "Preparation, microstructure and dislocation of solar-grade multicrystalline silicon by directional solidification from metallurgical-grade silicon", Trans. Nonferrous Met. Soc. China 22 (2012) 2548. https://doi.org/10.1016/S1003-6326(11)61499-4
  7. K. Jiptner, M. Fukuzawa, Y. Miyamura, H. Harada, K. Kakimoto and T. Sekiguchi, "Evaluation of residual strain in directional solidified mono-Si ingots", Phys. Status Solidi 10 (2013) 141. https://doi.org/10.1002/pssc.201200884
  8. I. Takahashi, N. Usami, K. Kutsukake, G. Stokkan, K. Morishita and K. Nakajima, "Generation mechanism of dislocations during directional solidification of multicrystalline silicon suing artificially designed seed", Journal of Crystal Growth 312 (2010) 897. https://doi.org/10.1016/j.jcrysgro.2010.01.011
  9. G. Stokkan, "Relationship between dislocation density and nucleation of multicrystalline silicon", Acta Materialia 58 (2010) 3223. https://doi.org/10.1016/j.actamat.2010.01.042
  10. D. Kohler, A. Zuschlag and G. Hahn, "On the origin and formation of large defect clusters in multicrystalline silicon solar cells", Solar Energy Materials & Solar Cells 120 (2014) 275. https://doi.org/10.1016/j.solmat.2013.09.018
  11. H.J. Wu, W.H. Ma, X.H. Chen, Y. Jiang, X.Y. Mei, C. Zhang and X.H. Wu, "Effect of thermal annealing on defects of upgraded metallurgical grade silicon", Trans. Nonferrous Met. Soc. China 21 (2011) 1340. https://doi.org/10.1016/S1003-6326(11)60863-7
  12. M.G. Tsoutsouva, V.A. Oliveira, D. Camel, T.N. Tran Thi, J. Baruchel, B. Marie and T.A. Lafford, "Segregation, precipitation and dislocation generation between seeds in directionally solidified mono-like silicon for photovoltaic applications", Journal of Crystal Growth 401 (2014) 397. https://doi.org/10.1016/j.jcrysgro.2013.12.022
  13. X. Tang, Laurent A. Fancis, L. Gong, F. Wang, J.R. Raskin, D. Flandre, S. Zhang, D. You, L. Wu and B. Dai, "Characterization of high-efficiency multi-crystalline silicon in industrial production", Solar Energy Materials & Solar Cells 117 (2013) 225. https://doi.org/10.1016/j.solmat.2013.06.013

Cited by

  1. The relationship between minority carrier life time and structural defects in silicon ingot grown with single seed vol.25, pp.1, 2015, https://doi.org/10.6111/JKCGCT.2015.25.1.013
  2. The role of porous graphite plate for high quality SiC crystal growth by PVT method vol.25, pp.2, 2015, https://doi.org/10.6111/JKCGCT.2015.25.2.051