DOI QR코드

DOI QR Code

Temperature-dependent photoluminescence properties of amorphous and crystalline V2O5 films

비정질과 결정질 V2O5 박막의 온도에 따른 발광특성

  • Received : 2014.09.01
  • Accepted : 2014.10.02
  • Published : 2014.10.31

Abstract

In order to investigate the photoluminescence (PL) properties of $V_2O_5$ films, amorphous and crystalline films were prepared by using RF sputtering system, and the PL spectra of the films were measured at the temperatures ranging from 300 K to 10 K. In the amorphous $V_2O_5$ film grown at room temperature, a PL peak centered at ~505 nm was only observed, and in the crystalline $V_2O_5$ film, two peaks centered at ~505 nm and ~695 nm, which is known to correspond to oxygen defects, were revealed. The position of PL peak centered at 505 nm for both the amorphous and crystalline $V_2O_5$ films showed a strong dependence on temperature, and the positions were 2.45 eV at 300 K and 2.35 eV at 10 K, respectively. The PL at 505 nm was due to the band energy transition in $V_2O_5$, and also, the reduction of the peak position energy with decreasing temperature was caused by a decrement of the lattice dilatation effect with reducing electron-phonon interaction.

$V_2O_5$ 박막에서의 PL 특성을 조사하기 위해 RF 스퍼터링법을 이용하여 비정질과 결정질 $V_2O_5$ 박막을 제작하였고, 10~300 K의 온도까지 PL 스펙트럼을 측정하였다. 상온에서 성장된 비정질 박막에서는 ~505 nm를 중심으로 하는 하나의 PL 피크만이 관찰되었고, 결정질 $V_2O_5$ 박막에서는 505 nm를 중심으로 하는 피크와 산소결함에 의한 것으로 알려진 ~695 nm를 중심으로 하는 피크가 관찰되었다. 비정질과 결정질 $V_2O_5$ 박막에서 관찰되는 505 nm에서의 PL 피크의 위치는 온도에 강한 의존성을 보였고, 그 값은 300 K에서 2.45 eV였고, 10 K에서 2.35 eV였다. 505 nm에서의 PL은 $V_2O_5$에서의 밴드 에너지 전이에 의한 것이었으며, 또한 온도의 감소에 따른 피크 위치 에너지의 감소는 전자-포논 상호작용의 감소에 의한 격자팽창효과의 감소 때문이었다.

Keywords

References

  1. L.R. Smith, G.S. Rohrer, K.S. Lee, D.K. Seo and M.H. Whangboo, "A scanning probe microscopy study of the (001) surfaces of $V_2O_5$ and $V_6O_{13}$", Surf. Sci. 367 (1996) 87. https://doi.org/10.1016/S0039-6028(96)00858-8
  2. M. Benmoussa, E. Ibnouelghazi, A. Bennouna and E.L. Ameziane, "Structural, electrical and optical properties of sputtered vanadium pentoxide thin films", Thin Solid Films 265 (1995) 22.
  3. Y. Hu, Z. Li, Z. Zhang and D. Meng, "Effect of magnetic field on the visible light emission of $V_2O_5$ nanorods", Appl. Phys. Lett. 94 (2009) 103107. https://doi.org/10.1063/1.3095502
  4. C.W. Zou, X.D. Yan, J. Han, R.Q. Chen and W. Gao, "Microstructures and optical properties of ${\beta}$-$V_2O_5$ nanorods prepared by magnetron sputtering", J. Phys. D: Appl. Phys. 42 (2009) 145402. https://doi.org/10.1088/0022-3727/42/14/145402
  5. M. Kang, I. Kim, S.W. Kim, J.W. Ryu and H.Y. Park, "Metal-insulator transition without structural phase transition in $V_2O_5$ film", Appl. Phys. Lett. 98 (2011) 131907. https://doi.org/10.1063/1.3571557
  6. S.H. Han, S.H. Kang, H. Kim, D.H. Yoon and W.S. Yang, "Optical properties of vanadium dioxide thin films on c-$Al_2O_3$ (001) substrates by in-situ RF magnetron sputtering", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 224. https://doi.org/10.6111/JKCGCT.2013.23.5.224
  7. B.H. Kim, A. Kim, S.Y. Oh, S.S. Bae, Y.J. Yun and H.Y. Yu, "Energy gap modulation in $V_2O_5$ nanowires by gas adsorption", Appl. Phys. Lett. 93 (2008) 233101. https://doi.org/10.1063/1.3044403
  8. Y.J. Park, J.G. Kim, M.K. Kim, H.T. Chung and H.G. Kim, "Electrochemical properties of $LiMn_2O_4$ thin films: suggestion of factors for excellent recharge-ability", J. Power Sources 87 (2000) 69. https://doi.org/10.1016/S0378-7753(99)00362-6
  9. A.D. Raj, T. Pazhanivel, P.S. Kumar, D. Mangalaraj, D. Nataraj and N. Ponpandian, "Self assembled $V_2O_5$ nanorods for gas sensors", Curr. Appl. Phys. 10 (2010) 531. https://doi.org/10.1016/j.cap.2009.07.015
  10. M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, D.W. Kim, K.J. Choi, J.H. Lee and S.H. Hong, "Gas sensing properties of defect-controlled ZnO-nanowire gas sensor", Appl. Phys. Lett. 93 (2008) 263103. https://doi.org/10.1063/1.3046726
  11. S.T. Lim, M.I. Kang, K.S. Lee, Y.G. Kim and J.W. Ryu, "Investigation of growth properties of sputtered $V_2O_5$ thin films using spectroscopic ellipsometry", J. Kor. Vac. Soc. 16 (2007) 134. https://doi.org/10.5757/JKVS.2007.16.2.134
  12. N. Fateh, G.A. Fontalvo, L. Cha, T. Klunsner, G. Hlawacek, C. Teichert and C. Mitterer, "Synthesis-structure relations for reactive magnetron sputtered $V_2O_5$ films", Surf. Coat. Technol. 202 (2008) 1551. https://doi.org/10.1016/j.surfcoat.2007.07.010
  13. P. Singh and D. Kaura, "Influence of film thickness on texture and electrical and optical properties of room temperature deposited nanocrystalline $V_2O_5$ thin films", J. Appl. Phys. 103 (2008) 043507. https://doi.org/10.1063/1.2844438
  14. V.V. Atuchin, B.M. Ayupov, V.A. Kochubey, L.D. Pokrovsky and C.V. Ramana, "Optical properties of textured $V_2O_5$/Si thin films deposited by reactive magnetron sputtering", Opt. Mater. 30 (2008) 1145. https://doi.org/10.1016/j.optmat.2007.05.040
  15. M. Sung, M. Lee, G.T. Kim and S. Hong, "Large-scale "surface-programmed assembly" of pristine vanadium oxide nanowire-based device", Adv. Mater. 17 (2005) 2361. https://doi.org/10.1002/adma.200500682
  16. P. Clauws and J. Vennik, Phys. "Optical absorption of defects in $V_2O_5$ single crystals: as-grown and reduced $V_2O_5$", Status Solidi B 66 (1974) 553. https://doi.org/10.1002/pssb.2220660218
  17. Y. Zhao, Z.J. Zhang and Y.H. Lin, "Optical and dielectric properties of a nanostructured $NbO_2$ thin film prepared by thermal oxidation", J. Phys. D 37 (2004) 3392. https://doi.org/10.1088/0022-3727/37/24/006
  18. M. Kang, S.W. Kim, Y. Hwang, Y. Um and J.W. Ryu, "Temperature dependence of the interband transition in a $V_2O_5$ film", AIP Advances 3 (2013) 052129. https://doi.org/10.1063/1.4808021
  19. P.B. Allen and H. Heine, "Theory of the temperature dependence of electronic band structures", J. Phys. C: Solid State 9 (1976) 2305. https://doi.org/10.1088/0022-3719/9/12/013
  20. S. Zollner, S. Gopalan and M. Cardona, "The temperature dependence of the band gaps in InP, InAs, InSb, and GaSb", Solid State Commun. 77 (1991) 485. https://doi.org/10.1016/0038-1098(91)90725-B