DOI QR코드

DOI QR Code

A Study on the Determination of Reference Parameter for Aircraft Impact Induced Risk Assessment of Nuclear Power Plant

원전의 항공기 충돌 리스크 평가를 위한 대표매개변수 선정 연구

  • Shin, Sang Shup (Integrated Risk Assessment Division, Korea Atomic Energy Research Institute) ;
  • Hahm, Daegi (Integrated Risk Assessment Division, Korea Atomic Energy Research Institute) ;
  • Choi, In-Kil (Integrated Risk Assessment Division, Korea Atomic Energy Research Institute)
  • 신상섭 (한국원자력연구원 종합안전평가부) ;
  • 함대기 (한국원자력연구원 종합안전평가부) ;
  • 최인길 (한국원자력연구원 종합안전평가부)
  • Received : 2014.07.02
  • Accepted : 2014.08.18
  • Published : 2014.10.31

Abstract

In this study, we developed a methodology to determine the reference parameter for an aircraft impact induced risk assessment of nuclear power plant (NPP) using finite element impact analysis of containment building. The target structure used to develop the method of reference parameter selection is one of the typical Korean PWR type containment buildings. We composed a three-dimensional finite element model of the containment building. The concrete damaged plasticity model was used for the concrete material model. The steels in the tendon, rebar, and liner were modeled using the piecewise-linear stress-strain curves. To evaluate the correlations between structural response and each candidate parameter, we developed Riera's aircraft impact force-time history function with respect to the variation of the loading parameters, i.e., impact velocity and mass of the remaining fuel. For each force-time history, the type of aircraft is assumed to be a Boeing 767 model. The variation ranges of the impact velocity and remaining fuel percentage are 50 to 200m/s, and 30 to 90%, respectively. Four parameters, i.e., kinetic energy, total impulse, maximum impulse, and maximum force are proposed for candidates of the reference parameter. The wellness of the correlation between the reference parameter and structural responses was formulated using the coefficient of determination ($R^2$). From the results, we found that the maximum force showed the highest $R^2$ value in most responses in the materials. The simplicity and intuitiveness of the maximum force parameter are also remarkable compared to the other candidate parameters. Therefore, it can be concluded that the maximum force is the most proper candidate for the reference parameter to assess the aircraft impact induced risk of NPPs.

원전의 항공기 충돌 리스크 평가에 사용되는 대표매개변수를 선정하기 위한 방법론을 개발하였다. 대상 원전은 국내의 대표적인 경수로형 원전 중 하나로 선정하여 3차원 유한요소 해석 모델을 구축하였다. 콘크리트 재료모델에는 소성손상모델이 적용되었으며, 강재는 다중선형곡선거동을 가지는 것으로 모델링하였다. 운동에너지, 전체 충격량, 최대 충격량, 최대 하중등 4종의 대표매개변수 후보군을 선정하였다. 각각의 매개변수 후보군은 모두 충돌 속도와 질량의 함수로 표현되므로, 충돌속도 50~200m/s, 항공유량 30~90%의 범위에 대하여 매개변수값을 도출하고 충돌 해석을 수행하여, 충돌 시의 구조 응답과의 상관관계를 분석하였다. 모든 해석에서 항공기의 기종은 보잉767 기종으로 선정하였다. 충돌해석에는 Riera의 하중-시간 이력 함수를 이용한 해석기법을 적용하였다. 매개변수와 충돌 시 응답의 상관관계 적합성은 결정계수값을 이용하여 분석하였다. 4 종의 대표매개변수 후보군 중 최대 하중값이 가장 직관적일 뿐만 아니라 본 연구에서의 해석 케이스에서는 응답과의 상관성도 가장 뛰어난 것으로 나타남에 따라, 항공기충돌 리스크 평가를 위하여 가장 적합한 매개변수라 할 수 있을 것으로 판단되었다.

Keywords

References

  1. Abbas, H., Paul, D.K., Godbole, P.N., Nayak, G.C. (1996) Aircraft Crash upon Outer Containment of Nuclear Power Plant, Nucl. Eng. & Design, 160, pp.13-50. https://doi.org/10.1016/0029-5493(95)01049-1
  2. Arros, J., Doumbalski, N. (2007) Analysis of Aircraft Impact to Concrete Structures, Nucl. Eng. & Design, 237, pp.1241-1249. https://doi.org/10.1016/j.nucengdes.2006.09.044
  3. Boeing 767 Family (2011) Airport Reference Code and Approach Speeds for Boeing Airplanes.
  4. Chung, C.H. (2002) Dynamic Non-linear Analysis of the CANDU-6 Containment Subjected to Aircraft Impact Forces, KSCE, 22(4A), pp.965-974.
  5. Chelapati, C.V., Kennedy, R.P., Wall, I.B. (1972) Probabilistic Assessment of Aircraft Hazard for Nuclear Structures, Nucl. Eng. & Design, 19(2), pp.333-364. https://doi.org/10.1016/0029-5493(72)90136-7
  6. Henkel, F.O., Klein, D. (2007) Variants of Analysis of the Load Case Airplane Crash, Transactions, 19th International Conference on Structural Mechanics in Reactor Technology(SMiRT19), Toronto, America.
  7. Iliev, V., Georgiev, K., Serbezov, V. (2011) Assessment of Impact Load Curve of Boeing 747-400, http://www. Nts-bg.ttm.bg.
  8. Iqbal, M.A., Rai, S., Sadique, M.R., Bhargave, P. (2012) Numerical Simulation of Aircraft Crash on Nuclear Containment Structure, Nucl. Eng. & Design, 243, pp.321-335. https://doi.org/10.1016/j.nucengdes.2011.11.019
  9. IAEA EBP WA7 (2013) Safety Aspects in Protection of NPP against Human Induced External Events: General Considerations, IAEA Safety Report(Draft).
  10. IAEA (2013) Safety Assessment of NPP Structures against Human Induced External Events, IAEA Safety Report(Draft).
  11. Jeon, S.J., Lee, Y.S., Chung, C.H., Chung, Y.S. (2005) Dynamic Nonlinear Response of Domestic Nuclear Containment Buildings Subjected to Large Aircraft Impact Load, KSCE, 25(1A), pp.191-200.
  12. Katayama, M., Itoh, M., Rainsberger, R. (2004) Numerical Simulation of Jumbo Jet Impacting on Thick Concrete Walls-Effects of Reinforcement and Wall Thickness, 2nd Asian Conference on High Pressure Research(ACHPR-2), Nara, Japan.
  13. Lo Frano, R., Forasassi, G. (2009) Preliminary Evaluation of Aircraft Impact on a Near Term Nuclear Power Plant, Proceedings of the International Conference Nuclear Energy for New Europe, Bled, Slovenia, pp.602.1-602.9.
  14. Mullapudi, T.R.S., Summers, P., Moon, I.H. (2012) Impact Analysis of Steel Plated Concrete Wall, Structures Congress, ASCE, pp.1881-1893.
  15. Nuclear Energy Institute (NEI 07-13) (2011) Methodology for Performing Aircraft Impact Assessments for New Plat Designs.
  16. Riera, J.D. (1968) On the Stress Analysis of Structures Subjected to Aircraft Forces, Nucl. Eng. & Design, 8, pp.415-426. https://doi.org/10.1016/0029-5493(68)90039-3
  17. Rebora, B., Zimmermann, Th. (1976) Dynamic Rupture Analysis of Reinforced Concrete Shells, Nucl. Eng. & Design, 37, pp.269-297. https://doi.org/10.1016/0029-5493(76)90021-2
  18. Riera, J.D. (1980) A Critical Reappraisal of Nuclear Power Plant Safety against Accidental Aircraft Impact, Nucl. Eng. & Design, 57, pp.193-206. https://doi.org/10.1016/0029-5493(80)90233-2
  19. Riera, J.D., Rios, R., Iturrioz, I. (2003) Determination of the Load-carrying Capacity of a Reinforced Concrete Shell Subjected to Impact Loading, Transactions, 17th International Conference on Structural Mechanics in Reactor Technology(SMiRT17), Prague, Czech Republic, pp.1-8.
  20. Sugano, T., Tsubota, H., Kasai, Y., Koshika, N., Orui, S., Von Riesemann, W.A., Bickel, D.C., Parks, M.B. (1993) Full-scale Aircraft Impact Test for Evaluation of Impact Force, Nucl. Eng. & Design, 140, pp.373-385. https://doi.org/10.1016/0029-5493(93)90119-T
  21. SIMULIA, ABAQUS/Standard 6.8-1-User's Manual (2008) Hibbitt, Karlsson & Sorensen, Inc., RI, USA.
  22. Shin, S.S., Park, T.H. (2011) Analysis of Containment Building Subjected to a Large Aircraft Impact using a Hydrocode, KSCE, 31(5A), pp.369-378.
  23. Song, Y.S., Shin, S.S., Jung, D.H., Park, T.H. (2011) Numerical Analysis of Nuclear-Power Plant Subjected to an Aircraft Impact using Parallel Processor, J. Comput. Struct. Eng. Inst. Korea, 24(6), pp.715-722.
  24. Sadique, M.R., Iqbal, M.A., Bhargave, P. (2013) Nuclear Containment Structure Subjected to Commercial and Fighter Aircraft Crash, Nucl. Eng. & Design, 260, pp.30-46. https://doi.org/10.1016/j.nucengdes.2013.03.009
  25. United States Nuclear Regulatory Commission (USNRC) (2009) Aircraft Impact Assessment, 10CFR50.150.