THE LEFSCHETZ CONDITION ON PROJECTIVIZATIONS
OF COMPLEX VECTOR BUNDLES

HIROKAZU NISHINOBU AND TOSHIHIRO YAMAGUCHI

Abstract. We consider a condition under which the projectivization $P(E^k)$ of a complex k-bundle $E^k \to M$ over an even-dimensional manifold M can have the hard Lefschetz property, affected by [10]. It depends strongly on the rank k of the bundle E^k. Our approach is purely algebraic by using rational Sullivan minimal models [5]. We will give some examples.

1. Introduction

A Poincaré duality space Y of the formal dimension $fd(Y) = \max \{i; H^i(Y; \mathbb{Q}) \neq 0\} = 2m$ is said to be cohomologically symplectic (c-symplectic) if $u^m \neq 0$ for some $u \in H^2(Y; \mathbb{Q})$ and, furthermore, is said to have the hard Lefschetz property (or simply the Lefschetz property) with respect to the c-symplectic class u, if the maps $\cup u^j : H^{m-j}(Y; \mathbb{Q}) \to H^{m+j}(Y; \mathbb{Q}), \quad 0 \leq j \leq m$
are monomorphisms (then called the Lefschetz maps) [17]. For example, a compact Kähler manifold has the hard Lefschetz property [17], [6, Theorem 4.35]. Recall the Thurston-Weinstein problem [17, p. 198]: “Describe symplectic compact manifolds with no Kähler structure”. Conversely, what conditions on a symplectic manifold imply the existence of a Kähler structure or, more generally, that the manifold satisfies the hard Lefschetz property?

Let M be an even-dimensional manifold and $\xi : E^k \to M$ be a complex k-bundle over M. The projectivization of the bundle ξ

$P(\xi) : \mathbb{C}P^{k-1} \xrightarrow{j} P(E^k) \to M$
satisfies the rational cohomology algebra condition (*):

$H^*(P(E^k); \mathbb{Q}) = H^*(M; \mathbb{Q})[x]/(x^k + c_1x^{k-1} + \cdots + c_{k-j}x^j + \cdots + c_{k-1}x + c_k)$

Received May 16, 2014; Revised August 28, 2014.
2010 Mathematics Subject Classification. 55P62, 57R17.
Key words and phrases. projectivization, c-symplectic, the Lefschetz property, Sullivan model, formal, projective (n)-Lefschetz, projective non-Lefschetz.

©2014 Korean Mathematical Society

569
where \(c_i \) are the \(i \)-th Chern classes of \(\xi \) and \(x \) is a degree 2 class generating the cohomology of the complex projective space fiber (Leray-Hirsch theorem) \([3, 10], [17, \text{p. 122}].\) The manifold \(P(E^k) \) appears as the exceptional divisor in the blow-up construction for a certain embedding of \(M \) \([11], [17, \text{Chap. 4}].\) When \(M \) is a non-toral symplectic nilmanifold of dimension \(2n \), there is a bundle \(E^n \) such that \(P(E^n) \) is not Lefschetz \([18], [10, \text{Example 4.4}].\) In general, for a \(2k \)-dimensional manifold \(M \) and a fibration \(CP^{k-1} \to E \to M \), the total space \(E \) is Lefschetz if and only if \(M \) is Lefschetz \([10, \text{Remark 4.2}].\) We consider the following:

Problem 1.1. Suppose that the projectivization \(P(E^k) \) of a \(k \)-dimensional vector bundle \(E^k \to M \) is c-symplectic with respect to \(\tilde{x} \) where \(j^*(\tilde{x}) = x \); i.e., \(\tilde{x}^m \neq 0 \) when \(\dim P(E^k) = 2m \). What rational homotopical conditions on \(M \) are necessary for \(P(E^k) \) to have the Lefschetz property with respect to \(\tilde{x} \)?

Proposition 1.2. Let \(M \) be an even dimensional manifold.

1. For a sufficiently large \(k \), there is a \(k \)-dimensional vector bundle \(E^k \to M \) such that \(P(E^k) \) is c-symplectic with respect to \(x \).
2. If \(P(E^k) \) is c-symplectic with respect to \(x \), then there is a vector bundle \(E^m \to M \) such that \(P(E^m) \) is c-symplectic with respect to \(x \) for any \(m > k \).

Definition 1.3. An even-dimensional manifold (or more general Poincaré duality space) \(M \) is said to be projective (\(k \))-Lefschetz if there exists a complex \(k \)-bundle \(E^k \) such that the projectivization \(P(E^k) \) is c-symplectic with respect to \(\tilde{x} \) and has the Lefschetz property with respect to \(\tilde{x} \). Then we often say simply that \(M \) is projective Lefschetz. In particular, we say that \(M \) is projective non-Lefschetz if \(P(E^k) \) cannot have the Lefschetz property for any \(k \) and \(E^k \).

In this paper, we recall D. Sullivan’s rational model in §2 and we give some examples that indicate how the rational cohomology algebra of \(M \) determines the projective (\(n \))-Lefschetzness of \(M \) when \(M \) is the product of at most four spheres in §3.

Acknowledgement. The authors would like to thank Shoji Yokura for his valuable comments on an earlier version of the paper and the referee for many helpful suggestions.

2. Sullivan model

Let \(\mathcal{M}(Y) = (\Lambda Y, d) \) be the Sullivan minimal model of a nilpotent space \(Y \). It is a freely generated \(\mathbb{Q} \)-commutative differential graded algebra (abbr. DGA) with a \(\mathbb{Q} \)-graded vector space \(V = \bigoplus_{i \geq 1} V^i \) where \(\dim V^i < \infty \), \(V \) admits a basis \(\{v_\alpha \} \) indexed by a well-ordered set \(\{\alpha\} \) such that \(\deg(v_\alpha) \leq \deg(v_\beta) \) if \(\alpha < \beta \) and \(d(v_\alpha) \in \Lambda(v_\beta)_{\beta \leq \alpha} \). The differential \(d \) is a decomposable; i.e., \(d(V^i) \subset (\Lambda^+ V \cdot \Lambda^+ V)^i+1 \). Here \(\Lambda^+ V \) is the ideal of \(\Lambda V \) generated by elements of positive degree. Denote the degree of a homogeneous element \(f \) of a graded algebra as \(|f| \). Then \(xy = (-1)^{|x||y|}yx \) and \(d(xy) = d(x)y + (-1)^{|x|}xd(y) \). Note
that $\mathcal{M}(Y)$ determines the rational homotopy type of Y. In particular, it is known that

$$H^*(\Lambda Y, d) \cong H^*(Y; \mathbb{Q})$$

and $V_i \cong \text{Hom}(\pi_i(Y), \mathbb{Q})$.

See [5, §12–§15] for details. When $\pi_*(Y) \otimes \mathbb{Q} < \infty$ and $\dim H^*(Y; \mathbb{Q}) < \infty$, Y is said to be \textit{elliptic}. It is known that

$$fd(Y) = fd(\Lambda Y, d) = \sum_i |y_i| - \sum_i (|x_i| - 1)$$

for $V^{\text{odd}} = \mathbb{Q}(y_i)$ and $V^{\text{even}} = \mathbb{Q}(x_i)$, when Y is elliptic [5, §32].

Proposition 2.1. Let M be an even dimensional manifold. Then there is a graded algebra $A_0 = H^*(M; \mathbb{Q})[x]/(x^k + c_1x^{k-1} + \cdots + c_{k-1}x + c_k)$ with $|x| = 2$ and $c_i \in H^{2i}(M; \mathbb{Q})$ if and only if there is a complex k-bundle $\xi : E^k \to M$ such that c_i are the Chern classes of ξ by suitable scalar multiplying and A is the rational cohomology of $P(E^k)$.

Proof. The set of equivalence classes of complex k-vector bundles over M is identified as the homotopy set from M to the complex Grassmanian $G(k, N)$ of k-planes in \mathbb{C}^N for a sufficiently large N [2, IV]. Then the Chern classes of a k-bundle are given as $f^*(c_1(\gamma)), \ldots, f^*(c_k(\gamma))$ for the classifying map f and the universal bundle γ over $G(k, N)$. Conversely, for given elements c_1, \ldots, c_k, a rational map $M \to M(0) \to G(k, N)(0)$ induced by $\Pi_i c_i : M \to \Pi_i K(Q, 2i) \simeq BU(k)_0$ is factored through a map $f : M \to G(k, N)$ [12, Theorem 5.3] because $G(k, N) = U(N)/U(k) \times U(N - k)$ is 0-universal [1, Proposition 3.7]. Here $BU(k)$ is the classifying space of the unitary group $U(k)$ and $Y(0)$ is the rationalization of a space Y [8]. Thus we obtain the appropriate k-bundle as the pullback of γ by f.

Corollary 2.2. The projective Lefschetzness of an even-dimensional manifold M depends only on the graded algebra $H^*(M; \mathbb{Q})$.

Let $\mathcal{M}(\mathbb{C}P^{k-1}) = (\mathbb{Q}[x] \otimes \Lambda(y), d)$ with $d(y) = x^k$ and $d(x) = 0$. From Corollary 2.2, the information of $P(E^k)$ that we need in this note is given as the relative Sullivan model [5, §14] :

$$(H^*(M; \mathbb{Q}), 0) \to (H^*(M; \mathbb{Q}) \otimes \mathbb{Q}[x] \otimes \Lambda(y), D) \to (\mathbb{Q}[x] \otimes \Lambda(y), d)$$

with $D(f) = 0$ for $f \in H^*(M; \mathbb{Q})$, $D(x) = 0$ and

$$(**) \quad D(y) = x^k + c_1x^{k-1} + \cdots + c_{k-1}x + c_k,$$

where $c_i \in H^{2i}(M; \mathbb{Q})$ are the Chern classes of ξ. Especially, we don’t need the assumption that M is nilpotent. Remark that $H^*(P(E^k); \mathbb{Q}) \cong H^*(H^*(M; \mathbb{Q}) \otimes \mathbb{Q}[x] \otimes \Lambda(y), D)$ as a \mathbb{Q}-graded algebra and then

$$H^1(P(E^k); \mathbb{Q}) = H^1(M; \mathbb{Q}) \oplus H^{j-2}(M; \mathbb{Q})x \oplus \cdots \oplus H^{j-2k}(M; \mathbb{Q})x^{k-1}.$$

Notice that $(**)$ is equivalent to $(*)$ of §1 and also equivalent to

$$[x^k] = -[c_1x^{k-1} + \cdots + c_{k-1}x + c_k].$$
in $H^*(P(E^k); \mathbb{Q})$, which is the only relation between the elements of $H^*(M; \mathbb{Q})$ and x. Then, for example, $[x^{k+1}] = -[c_1 x^k + \cdots + c_{k-1} x^{j+1} + \cdots + c_k x] = [c_1 x^{k-1} + \cdots + (c_1 c_k - c_{k-j+1}) x^j + \cdots + (c_1 c_{k-1} - c_k) x + c_1 c_k]$. In particular,

\[(**) \quad [a] \neq 0 \text{ in } H^*(M; \mathbb{Q}) \text{ if and only if } [ax^j] \neq 0 \text{ in } H^*(P(E^k); \mathbb{Q}) \text{ for any } 0 \leq j < k. \]

Lemma 2.3. Let $A = (H^*(M; \mathbb{Q}) \otimes \mathbb{Q}[x] \otimes \Lambda(y), D)$ with $D(y) = x^k + c_1 x^{k-1} + \cdots + c_{k-1} x + c_k$ and let $B = (H^*(M; \mathbb{Q}) \otimes \mathbb{Q}[x] \otimes \Lambda(y'), D')$ with $D'(y') = x^{m-k} D(y) = x^m + c_1 x^{m-1} + \cdots + c_{k-1} x^{m-k+1} + c_k x^{m-k}$ for $k < m$. If $[f] \neq 0$ in $H^*(A)$, then $[fx^{m-k}] \neq 0$ in $H^*(B)$.

Proof. Notice that an element of $H^*(A)$ is identified as one of $H^*(B)$ since $H^*(A)$ is a submodule of $H^*(B)$ over $H^*(M; \mathbb{Q})$. Suppose that $[f] = [a_1 x^{k-1} + \cdots + a_{k-1} x + a_k] \neq 0$ in $H^*(A)$ for $[a_i] \in H^*(M; \mathbb{Q})$. Then there is an index i with $[a_i] \neq 0$ in $H^*(M; \mathbb{Q})$. Thus, in $H^*(B)$, $[fx^{m-k}] = [a_1 x^{m-1} + \cdots + a_{k-1} x^{m-k+1} + a_k x^{m-k}] = [a_1 x^{m-1} + \cdots + [a_{k-1}] x^{m-k+1} + [a_k] x^{m-k}] \neq 0$ from H^{**}. \(\square \)

Proof of Proposition 1.2. From Proposition 2.1, it is sufficient to construct a certain DGA $(H^*(M; \mathbb{Q}) \otimes \mathbb{Q}[x] \otimes \Lambda(y), D)$. Let $\dim M = 2n$.

1. Let Ω be the fundamental class of M. Then we can define $(H^*(M; \mathbb{Q}) \otimes \mathbb{Q}[x] \otimes \Lambda(y), D)$ by $D(y) = \Omega x^{k-n} + x^k$ for $k \geq n$. Notice $\dim P(E^k) = \dim M + \dim \mathbb{Q}^k - 2 = 2n + 2k - 2$. Then we have $[x^{n+k-1}] = -[(\Omega x^{k-n}) x^{n-1}] = -[\Omega x^{k-n}] \neq 0$ from H^{**}.

2. Suppose that the DGA $(H^*(M; \mathbb{Q}) \otimes \mathbb{Q}[x] \otimes \Lambda(y), D)$ makes $P(E^k)$ c-symplectic; i.e., $[x^{n+k-1}] \neq 0$. Then, for $m > k$, the DGA $(H^*(M; \mathbb{Q}) \otimes \mathbb{Q}[x] \otimes \Lambda(y'), D')$ with $|g'| = 2m - 1$ and $D'(y') := x^{m-k} D(y)$ makes a $2n + (2m - 2)$-dimensional manifold $P(E^m)$ c-symplectic. Indeed, $[x^{n+m-1}] = [x^{n+k-1}]$, $x^{m-k}] \neq 0$ in cohomology from Lemma 2.3. \(\square \)

In (2) in Proposition 1.2, the bundle E^m is geometrically realized as the Whitney sum $E^k \oplus \theta^{m-k}$ where θ^{m-k} is the trivial $m - k$-bundle over M, in the manner of Proposition 2.1. Thus, if $P(E^k)$ is c-symplectic with respect to x, then $P(E^k \oplus \theta^m)$ is c-symplectic with respect to x for any $m > 0$.

3. Examples

In this section, let M be a 2-connected even-dimensional manifold and $\dim P(E^k) = 2m$.

Theorem 3.1. The $2n$-dimensional sphere S^{2n} is projective (k)-Lefschetz for any $k \geq n$.

Proof. Let $H^*(S^{2n}; \mathbb{Q}) = \mathbb{Q}[v]/(v^2)$ with $|v| = 2n$. Consider $P(E^k)$ such that $\dim P(E^k) = 2m$ and $D(y) = vx^{k-n} + x^k$ for $k \geq n$. Then $m = n + k - 1$ from $2m = \dim \mathbb{C} P^{k-1} + \dim S^{2n} = 2n + 2k - 2$. Since $[x^m] = -[vx^{k-n}]$.

\[572\] H. NISHINOU AND T. YAMAGUCHI
\[x^{m-k} = -[ex^{k-1}] \neq 0 \text{ from (***), } P(E^k) \text{ is c-symplectic with respect to } x. \]

Furthermore, \[\cup x^{k-n-1-2i}(v^x) = ex^{k-n-1-i} \neq 0 \text{ in } \]

\[\cup x^{k-n-1-2i} : H^{m-(k-n-1-2i)}(P(E^k); \mathbb{Q}) \to H^{m+(k-n-1-2i)}(P(E^k); \mathbb{Q}) \]

for \(i \geq 0 \) Thus \(S^{2n} \) is projective \((k)\)-Lefschetz. \(\square \)

Proposition 3.2. When \(M \) has the rational homotopy type of the product of odd spheres such that \(H^*(M; \mathbb{Q}) \cong \Lambda(v_1, v_2, \ldots, v_n) \) with all \(|v_i| \) odd and \(1 < |v_1| \leq |v_2| \leq \cdots \leq |v_n| \) \((n \text{ even})\), then there exists a bundle \(E^k \) such that \(P(E^k) \) is c-symplectic if and only if \(|v_1| + |v_n| \leq 2k, |v_2| + |v_{n-1}| \leq 2k, \ldots, |v_{n/2}| + |v_{n/2+1}| \leq 2k \).

Proof. (sketch) The minimal DGA \((\mathbb{Q}[x] \otimes \Lambda(v_1, v_2, \ldots, v_n, y), D)\) with \(|y| = 2k - 1 \) is c-symplectic if \(D(v_1) = \cdots = D(v_{n/2}) = 0 \) and

\[D(y) = v_1v_nx^{a_1} + v_2v_{n-1}x^{a_2} + \cdots + v_{n/2}x^{a_{n/2}} + x^k \]

for \(a_i = (2k - |v_i| - |v_{n-i+1}|)/2 \geq 0 \). Then we have the “if” part from Proposition 2.1 and [14, Theorem 1.2]. The “only if” part is obvious from [14, Theorem 1.2]. \(\square \)

Theorem 3.3. Let \(M = S^a \times S^b \) with \(a \leq b \).

(i) When \(a = b \), it is projective \((k)\)-Lefschetz for \(k \geq b \).

(ii) When \(a \) and \(b \) are even, it is projective \((\frac{k}{2})\)-Lefschetz.

(iii) When \(a \) and \(b \) are odd with \(a < b \), it is projective non-Lefschetz.

Proof. Note that \(H^*(M; \mathbb{Q}) = \mathbb{Q}[v_1, v_2]/(v_1^2, v_2^2) = \mathbb{Q}(1, v_2, v_1v_2) \) as a \(\mathbb{Q} \)-graded vector space with \(|1| = 0, |v_1| = a, |v_2| = b \) and \(|v_1v_2| = a + b \). Consider \(P(E^k) \) such that \(\dim P(E^k) = 2m \) and

\[D(y) = v_1v_2x^{k-\frac{a+b}{2}} + x^k \]

for \(k \geq (a + b)/2 \). Then \(m = \frac{a+b}{2} + k - 1 \) from \(2m = a + b + 2k - 2 \) and

\[\cup x^{m-a}(v_1) = v_1x^{m-a} = v_1x^{\frac{a+b}{2}+k-1-a} \text{ in } \]

\[\cup x^{m-a} : H^a(P(E^k); \mathbb{Q}) \to H^{2m-a}(P(E^k); \mathbb{Q}) \]

for \(0 \leq a \leq m \). In cohomology, this element has the form \(v_1x^{\geq k} = 0 \) if and only if \(a < b \). Thus, when \(a < b \), \(\cup x^{m-a}(v_1) = 0 \); i.e., \(\cup x^{m-a} \) is not the Lefschetz map. On the other hand, when \(a = b \), we have from (***)

\[\cup x^{m-2k}(x^i) = x^{m-i} \]
\[\cup x^{m-a-2k}(v_1x^i) = v_1x^{m-a-i} \]
\[\cup x^{m-b-2k}(v_2x^i) = v_2x^{m-b-i} \]
\[\cup x^{m-a-b-2k}(v_1v_2x^i) = v_1v_2x^{m-a-b-i}, \]

whose linear combination can not be zero in cohomology. Thus \(M \) is projective \((k)\)-Lefschetz for \(k \geq b \) when \(a = b \).
Let $a \leq b$ be even. Consider $P(E^k)$ such that $\dim P(E^k) = 2m$ and
\[D(y) = v_1 x^{\frac{a+b}{2}} + v_2 + x^{\frac{a}{2}}, \quad (k = \frac{b}{2}) \]
Then $m = \frac{b}{2} + b - 1$ and we have from (***)
\[\cup x^{m-2i}(x^i) = x^{m-i}, \]
\[\cup x^{m-a-2i}(v_1 x^i) = v_1 x^{m-a-i} = \begin{cases} v_1 v_2 x^{m-a-\frac{b}{2}-i} & (i < -\frac{b}{2}) \\ v_1 x^{m-a-i} & (\frac{b}{2} \leq i < -\frac{a+2b}{2}) \end{cases} \]
\[\cup x^{m-b-2i}(v_2 x^i) = v_2 x^{m-b-i}, \]
\[\cup x^{m-a-b-2i}(v_1 v_2 x^i) = v_1 v_2 x^{m-a-b-i}, \]
whose linear combination cannot be zero in cohomology; i.e., $\cup x^j$ are the Lefschetz maps. Thus M is projective $(\frac{b}{2})$-Lefschetz.

Remark 3.4. Even if M is projective (k)-Lefschetz, it is not projective (m)-Lefschetz for $m > k$, in general. For example, when $M = S^4 \times S^6$, M is projective (3)-Lefschetz from Theorem 3.3 but not projective (4)-Lefschetz. Indeed, in the proof of Theorem 3.3, $\cup x^2 : H^{m-2}(P(E^4)) \to H^{m+2}(P(E^4))$ is not a monomorphism since $\cup x^2([v_1 x + v_2 x^3]) = [v_1 x^3 + v_2 x^2 + x^3] = 0$, when $Dy = v_1 x^3 + v_2 x^2 + x^4 (m = 8)$.

Theorem 3.5. Let $M = S^a \times S^b \times S^c$ with $a \leq b \leq c$. We have the following:

(i) When a, b and c are even, M is projective $(\frac{a}{2})$-Lefschetz.

(ii) When a and c are odd, b is even, M is projective non-Lefschetz.

(iii) When a is even, b and c are odd, M is projective Lefschetz if and only if $b = c$. Then M is projective (b)-Lefschetz.

(iv) When a and b are odd, c is even, M is projective Lefschetz if and only if $a = b$. Then M is projective $(\max\{a, b\})$-Lefschetz.

Proof. Then $\dim M = a + b + c$ and $H^*(M; \mathbb{Q}) = \Lambda(v_1, v_2, v_3)/(v_1^2, v_2^2, v_3^2)$ with $|v_1| = a$, $|v_2| = b$, $|v_3| = c$.

(i) When $k = \frac{a}{2}$, $\dim P(E^k) = a + b + 2c - 2$ and $m = \frac{a+b+2c-2}{2}$. Then $|y| = c - 1$ and $d(y) = x^\frac{c}{2}$. Let $D(y) = v_1 x^{\frac{a+b}{2}} + v_2 x^{\frac{a+c}{2}} + v_3 + x^\frac{c}{2}$. Then $P(E^k)$ is c-symplectic by x since $[x^m] = -[v_1 v_2 v_3 x^\frac{a+b+c}{2}] \neq 0$. Moreover, we have from (***)
\[\cup x^{m-2i}(x^i) = x^{m-i}, \]
\[\cup x^{m-a-2i}(v_1 x^i) = \begin{cases} 2v_1 v_2 v_3 x^{\frac{a+c-2}{2}-i} & (0 \leq i < -\frac{a+b}{2}) \\ v_1 v_2 v_3 x^{\frac{a+c-2}{2}-i} - v_1 v_3 x^{\frac{a+b+c-2}{2}-i} & (\frac{a+b}{2} \leq i < -\frac{a+c}{2}) \end{cases} \]
\[\cup x^{m-b-2i}(v_2 x^i) = \begin{cases} v_1 v_2 v_3 x^{\frac{a+b-c-2}{2}-i} - v_2 v_3 x^{\frac{a+b+c-2}{2}-i} & (0 \leq i < -\frac{b+c}{2}) \\ -v_1 v_2 v_3 x^{\frac{a+b-c-2}{2}-i} - v_2 v_3 x^{\frac{a+b+c-2}{2}-i} & (\frac{b+c}{2} \leq i < \frac{a+b+c}{2}) \end{cases} \]
\[\cup x^{m-a-b-2i}(v_1 v_2 x^i) = \begin{cases} v_1 v_2 v_3 x^{\frac{a-b+c-2}{2}-i} & (0 \leq i < -\frac{b+c}{2}) \\ -v_1 v_2 v_3 x^{\frac{a-b+c-2}{2}-i} & (\frac{b+c}{2} \leq i < \frac{a+b+c}{2}) \end{cases} \]
whose linear combination can not be zero in cohomology. Thus M is projective $(\frac{1}{2})$-Lefschetz.

(ii) For $|y| = 2k - 1$ and $m = \frac{a+b+c+2k-2}{2}$, there are two types of c-symplectic models as follows:

\[
\begin{align*}
\text{(1)} & \quad D(y) = v_1 v_3 x^{k - \frac{a+b}{2}} + v_2 x^{k - \frac{b}{2}} + x^k. \\
\text{(2)} & \quad D(y) = v_1 v_2 v_3 x^k + x^k.
\end{align*}
\]

Then $\cup x^{m-a}(v_1) = -v_1 v_2 x^{-\frac{a+b+2k-2}{2}} = -v_1 v_2 x^{k} = 0$ from $a < c$.

\[\text{(2)} \quad D(y) = v_1 v_2 v_3 x^{k} + x^k.\]

Then $\cup x^{m-a}(v_1) = v_1 x^{k - \frac{a+b+c+2k-2}{2}} = v_1 x^{k} = 0$. Thus the Lefschetz maps do not exist in both cases (1) and (2).

(iii) Let $b < c$. For $|y| = 2k - 1$ and $m = \frac{a+b+c+2k-2}{2}$, there are two types of c-symplectic models as follows:

\[
\begin{align*}
\text{(1)} & \quad D(y) = v_1 x^{k - \frac{a+b}{2}} + v_2 v_3 x^{k - \frac{b}{2}} + x^k. \\
\text{(2)} & \quad D(y) = v_1 v_2 x^{k} + x^k.
\end{align*}
\]

Then $\cup x^{m-b}(v_2) = -v_1 v_2 x^{-\frac{a+b+2k-2}{2}} = -v_1 v_2 x^{k} = 0$ from $b < c$.

\[\text{(2)} \quad D(y) = v_1 v_2 v_3 x^{k} + x^k.\]

Then $\cup x^{m-a}(v_1) = v_1 x^{k - \frac{a+b+c+2k-2}{2}} = v_1 x^{k} = 0$. Thus the Lefschetz maps do not exist in both cases (1) and (2).

Let $b = c$. Then $M = S^a \times S^b \times S^b$, dim $M = a + 2b$ and $H^*(M; \mathbb{Q}) = \mathbb{Q}[v_1]/(v_1^2) \otimes H^*(S^b, v_3)$ with $|v_1| = a$, $|v_2| = |v_3| = b$. When $k = b$, dim $P(E^k) = a + 4b - 2$ and $m = \frac{a+4b-2}{2}$. Then $|y| = 2b - 1$ and $d(y) = x^b$. Let $D(y) = v_1 x^{k - \frac{b}{2}} + v_2 v_3 + x^b$. Then $P(E^k)$ is c-symplectic with respect to x. Moreover, we have from (***)

\[
\begin{align*}
\cup x^{m-2i}(x^i) & = x^{m-i}, \\
\cup x^{m-a-2i}(v_1 x^i) & = \left\{ \begin{array}{ll}
v_1 v_2 v_3 x^{-\frac{a+b+2k-2}{2}} & (0 \leq i < \frac{a+2b}{2}) \\
v_1 x^{-\frac{a+b+c-2}{2}} & (\frac{a+2b}{2} \leq i < \frac{a+4b}{4}).
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
\cup x^{m-b-2i}(v_2 x^i) & = \left\{ \begin{array}{ll}
v_1 v_2 x^{b-\frac{a+b+2k-2}{2}} & (0 \leq i < \frac{a}{2}) \\
v_2 x^{b-\frac{a+b+c-2}{2}} & \left(\frac{a}{2} \leq i < \frac{a+2b}{4} \right).
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
\cup x^{m-b-2i}(v_3 x^i) & = \left\{ \begin{array}{ll}
v_1 v_3 x^{b-\frac{a+b+2k-2}{2}} & (0 \leq i < \frac{a}{2}) \\
v_3 x^{b-\frac{a+b+c-2}{2}} & \left(\frac{a}{2} \leq i < \frac{a+2b}{4} \right).
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
\cup x^{m-(a+b)-2i}(v_1 v_2 x^i) & = v_1 v_2 x^{-\frac{a+b+2k-2}{2}} i,
\end{align*}
\]

\[
\begin{align*}
\cup x^{m-(a+b)-2i}(v_1 v_3 x^i) & = v_1 v_3 x^{-\frac{a+b+2k-2}{2}} i,
\end{align*}
\]

\[
\begin{align*}
\cup x^{m-(a+b)-2i}(v_2 v_3 x^i) & = v_2 v_3 x^{-\frac{a+b+2k-2}{2}} i,
\end{align*}
\]
Theorem 3.6. Let \(M = S^a \times S^b \times S^c \times S^d \) with \(a \leq b \leq c \leq d \). When \(a, b, c \) and \(d \) are odd, \(M \) is projective Lefschetz if and only if \(a = b \) and \(c = d \). Then \(M \) is projective (c)-Lefschetz.

Proof. Let \(a < b \). For \(|y| = 2k - 1 \) and \(m = \frac{a+b+c+d+2k-2}{2} \), there are four types of \(c \)-symplectic models as follows:

\[
\begin{align*}
(1) & \quad D(y) = v_1v_2x^k - \frac{a+b}{2} + v_3v_4x^k - \frac{c+d}{2} + x^k. \\
\text{Then } \cup x^{m-a}(v_1) & = -v_1v_3v_4x^{\frac{a+b+2k-2}{2}} = -v_1v_3v_4x^{\geq k} = 0.
\end{align*}
\]

(2) \(D(y) = v_1v_3x^k - \frac{a+c}{2} + v_2v_4x^k - \frac{b+d}{2} + x^k. \)

Then \(\cup x^{m-a}(v_1) = -v_1v_2v_4x^{\frac{a+c+2k-2}{2}} = -v_1v_2v_4x^{\geq k} = 0. \)

(3) \(D(y) = v_1v_4x^k - \frac{a+d}{2} + v_2v_3x^k - \frac{b+c}{2} + x^k. \)

Then \(\cup x^{m-a}(v_1) = -v_1v_2v_3x^{\frac{a+d+2k-2}{2}} = -v_1v_2v_3x^{\geq k} = 0. \)

(4) \(D(y) = v_1v_2v_3v_4x^{k - \frac{a+b+c+d+2k-2}{2}}. \)

Then \(\cup x^{m-a}(v_1) = v_1x^{\geq k} = 0. \) Thus, when \(a < b \), \(M \) is projective non-Lefschetz.

Let \(c < d \). For \(|y| = 2k - 1 \) and \(m = \frac{a+b+c+d+2k-2}{2} \), there are four types of \(c \)-symplectic models as follows:

\[
\begin{align*}
(1) & \quad D(y) = v_1v_2x^k - \frac{a+b}{2} + v_3v_4x^k - \frac{c+d}{2} + x^k. \\
\text{Then } \cup x^{m-c}(v_1) & = -v_1v_2v_3x^{\frac{a+b+c+2k-2}{2}} = -v_1v_2v_3x^{\geq k} = 0.
\end{align*}
\]

(2) \(D(y) = v_1v_3x^k - \frac{a+c}{2} + v_2v_4x^k - \frac{b+d}{2} + x^k. \)

Then \(\cup x^{m-b}(v_2) = v_1v_2v_3x^{\frac{b+d+2k-2}{2}} = v_1v_2v_3x^{\geq k} = 0. \)

(3) \(D(y) = v_1v_4x^k - \frac{a+d}{2} + v_2v_3x^k - \frac{b+c}{2} + x^k. \)

Then \(\cup x^{m-a}(v_1) = -v_1v_2v_3x^{\frac{a+d+2k-2}{2}} = -v_1v_2v_3x^{\geq k} = 0. \)

(4) \(D(y) = v_1v_2v_3v_4x^{k - \frac{a+b+c+d+2k-2}{2}}. \)

Then \(\cup x^{m-a}(v_1) = v_1x^{\geq k} = 0. \) Thus, when \(c < d \), \(M \) is projective non-Lefschetz.

Let \(a = b \) and \(c = d \). Then \(M = S^a \times S^a \times S^c \times S^c \), \(\text{dim } M = 2a + 2c \) and \(H^*(M; Q) = \Lambda(v_1, v_2, v_3, v_4) \) with \(|v_1| = |v_2| = a, |v_3| = |v_4| = c. \) When \(k = c \), \(\text{dim } P(E^k) = 2a + 4c - 2 \) and \(m = a + 2c - 1 \). Then \(|y| = 2k - 1 \) and \(d(y) = x^c. \)
Let \(D(y) = v_1v_2x^{c-a} + v_3v_4 + x^c \). Then \(P(E^k) \) is \(c \)-symplectic with respect to \(x \). Moreover, we have from (***)
\[
\begin{align*}
\cup x^{m-2i}(x^i) &= x^{m-i}, \\
\cup x^{m-a-2i}(v_1x^i) &= -v_1v_3v_4x^{c-1-i}, \\
\cup x^{m-a-2i}(v_2x^i) &= -v_2v_3v_4x^{c-1-i}, \\
\cup x^{m-c-2i}(v_3x^i) &= \begin{cases}
-v_1v_2v_3x^{c-1-i} & (0 \leq i < a) \\
 v_3x^{a+c-1-i} & (a \leq i < \frac{a+c}{2}),
\end{cases} \\
\cup x^{m-c-2i}(v_4x^i) &= \begin{cases}
-v_1v_2v_4x^{c-1-i} & (0 \leq i < a) \\
 v_4x^{a+c-1-i} & (a \leq i < \frac{a+c}{2}),
\end{cases}
\end{align*}
\]
whose linear combination can not be zero in cohomology. Thus \(M \) is projective (\(c \))-Lefschetz. \(\square \)

A nilpotent space is said to be formal if there is a quasi-isomorphism from its Sullivan minimal model to its rational cohomology algebra thought of as a DGA with zero differential [15]([5]). For example, compact Kähler manifolds are formal [4]. Finally we give a non-formal example.

Theorem 3.7. Let \(M \) be a simply connected 16-dimensional manifold such that \(\mathcal{M}(M) = (\Lambda(v_1, v_2, v_3, v_4), d) \) with \(|v_1| = |v_2| = 3, |v_3| = |v_4| = 5 \), \(d(v_1) = d(v_2) = 0 \), \(d(v_3) = v_1v_2 \) and \(d(v_4) = 0 \). Then \(M \) is projective non-Lefschetz.

Proof. There are only two cases for which \(P(E^k) \) is \(c \)-symplectic.

First, let \(D(y) = v_1v_4x^i + v_2v_3x^i + x^{i+4} \) with \(|y| = 7 + 2i \). Then
\[\dim P(E^k) = 22 + 2i \]
and \(m = 11 + i \).

Then \(P(E^k) \) is \(c \)-symplectic from \([x^{11+i}] = -[v_1v_2v_3v_4x^{i+3}] \neq 0 \). But \(P(E^k) \) does not have the Lefschetz property since \([v_1x^{8+i}] = [v_1(-v_1v_4x^i - v_2v_3x^i)x^i] = -[v_1v_2v_4x^{i+4}] = [v_1v_2v_3(v_1v_4x^i + v_2v_3x^i)] = 0. \)
Secondly, let $D(y) = v_1 v_2 v_3 v_4 x^i + x^{i+8}$ with $|y| = 15 + 2i$. Then
$$\dim P(E_k) = 30 + 2i$$ and $m = 15 + i$.

Then $P(E_k)$ is c-symplectic from $|x^{15+i}| = |v_1 v_2 v_3 v_4 x^{i+7}| \neq 0$. But $P(E_k)$ does not have the Lefschetz property since $|v_1 x^{15+i}| = |v_1 (v_2 v_3 v_4 x') x| = 0$.

Note that the manifold M of Theorem 3.7 is the product of S^5 with the pullback of the sphere bundle of the tangent bundle of S^6 by the canonical degree 1 map $S^3 \times S^3 \to S^6$. It is not formal since $H^*(M; \mathbb{Q})$ contains an indecomposable element $[v_1 v_3]$ (or $[v_2 v_3]$), which corresponds to a non-trivial Massey product $\langle v_1, v_2, v_1 \rangle$ (or $\langle v_2, v_1, v_2 \rangle$) [4]. Recall that $Y = (S^3 \times S^5)\sharp (S^3 \times S^8)$ is formal and has the same rational cohomology as M. From Corollary 2.2, we see that Y is projective non-Lefschetz.

Remark 3.8. We know that $S^3 \times S^3 \times S^5 \times S^5$ is projective (5)-Lefschetz from Theorem 3.6. It has the same rational homotopy groups as the manifold M of Theorem 3.7. Thus projective Lefschetzness is not determined by the rational homotopy groups.

References

Hirokazu Nishinobu
Kochi University
2-5-1, Akebono-cho, Kochi, 780-8520, Japan
E-mail address: cosmo51mutta@yahoo.co.jp

Toshihiro Yamaguchi
Kochi University
2-5-1, Akebono-cho, Kochi, 780-8520, Japan
E-mail address: tyamag@kochi-u.ac.jp