DOI QR코드

DOI QR Code

Robust Design Optimization for Reducing Cogging Torque of a BLDC Motor through an Enhanced Taguchi Method

개선된 다구찌 기법을 이용한 BLDC 전동기의 코깅 토크 저감을 위한 강건 최적설계

  • Lee, Chang-Uk (Department of Electrical Eng., Kyungpook National University) ;
  • Kim, Dong-Wook (Department of Electrical Eng., Kyungpook National University) ;
  • Kim, Dong-Hun (Department of Electrical Eng., Kyungpook National University)
  • Received : 2014.10.11
  • Accepted : 2014.10.21
  • Published : 2014.10.31

Abstract

In this paper, an efficient robust design utilizing an enhanced Taguchi method is proposed to reduce cogging torque of a BLDC motor in the presence of design uncertainty. To overcome defects of the conventional Taguchi method in dealing with a generalized robust design problem, a penalty function and an optimal level searching technique are newly introduced. In order to verify the proposed method, a 5 kW, rated speed of 2,300 rpm, rated torque of 20 Nm BLDC motor for driving electric vehicles is optimized. Then, the robust design is compared with conceptual and deterministic ones in terms of the cogging torque, rated torque and torque ripple.

본 논문에서는 설계변수의 불확실성을 고려한 BLDC 전동기의 코깅 토크 저감 설계를 수행하기 위하여 개선된 다구찌법을 이용한 효율적인 강건 최적설계 기법을 제안하였다. 일반적인 강건 최적설계 문제를 처리할 때 발생하는 기존 다구찌법의 단점을 해결하기 위하여, 벌칙함수와 최적수준 탐색기법이 새로이 도입되었다. 제안된 설계기법의 타당성을 검증하기 위하여 5 kW, 정격속도 2,300 rpm, 정격 토크 20 Nm의 전기자동차 구동용 BLDC 전동기의 코깅 토크 저감을 위한 강건 설계가 수행되었다. 또한 도출된 설계결과를 코깅 토크, 정격 토크 및 토크 리플에 대해 개념설계와 결정론적 최적설계 된 전동기들의 결과와 비교하였다.

Keywords

References

  1. J. Tu, K. K. Choi, and Y. H. Park, J. Mechanical Design 121, 557 (1999). https://doi.org/10.1115/1.2829499
  2. A. Haldar and S. Mahadevan, Probability, Reliability, and Statistical Methods in Engineering Design, John Wiley & Sons, New York (2000).
  3. N. Kim, D. Kim, D. Kim, H. Kim, D. Lowther, and J. Sykulski, IEEE Trans. Magn. 46, 3117 (2010). https://doi.org/10.1109/TMAG.2010.2043719
  4. F. Guimaraes, D. Lowther, and J. Ramirez, IEEE Trans. Magn. 42, 1207 (2006). https://doi.org/10.1109/TMAG.2006.871573
  5. N. Sengil, IEEE Trans. Plasma Sci. 41, 1156 (2013). https://doi.org/10.1109/TPS.2013.2251674
  6. M. Phadke, AT&T Bell Laboratories, Quality Engineering Using Robust Design, Prentice hall PTR, New Jersey (1989).
  7. S. Lee, A software for robust optimal design of structures using the Taguchi method, Master Thesis, KAIST, Korea (1998).
  8. I. Lee, K. K. Choi, L. Du, and D. Gorsich, ELSEVIER Comput. & Struct. 86, 1550 (2008). https://doi.org/10.1016/j.compstruc.2007.05.020
  9. N. Vanderplaats, Numerical Optimization Techniques For Engineering Design, McGraw-Hill, New York (1993).
  10. B. Lee, D. You, and G. Kang, J. Hur, IEEE Trans. Ind. Appl. 39, 1068 (2004).
  11. MagNet VII User's Manual, Infolytica Corporation, Quebec, Canada (2012).
  12. J. S. Arora, Introduction to Optimum Design, Elsevier, New York (2004).
  13. A. M. Omekanda, IEEE Trans. Ind. Appl. 42, 473 (2006). https://doi.org/10.1109/TIA.2006.870031

Cited by

  1. Cogging Torque Reduction in Permanent-Magnet Brushless Generators for Small Wind Turbines vol.20, pp.2, 2015, https://doi.org/10.4283/JMAG.2015.20.2.176