DOI QR코드

DOI QR Code

Synthesis and Application of Metal Doped Silica Particles for Adsorptive Desulphurization of Fuels

  • Jabeen, Bushra (Department of Environmental Sciences, Fatima Jinnah Women University) ;
  • Rafique, Uzaira (Department of Environmental Sciences, Fatima Jinnah Women University)
  • 투고 : 2014.03.18
  • 심사 : 2014.07.18
  • 발행 : 2014.09.30

초록

Petroleum a vital commodity affecting every aspect of 21st century. Toxicity and adverse effects of sulphur as catalyst in petroleum products is of great concern required development of techniques for desulphurization in compliance with the International standards. Installation of desulphurizing units costs over $200 million per unit placing economic burden on developing countries like Pakistan. Present study analysis of commercial fuels (station petrol and jet fuel JP8) on gas chromatography-mass spectrometry (GC-MS) identified sulphur concentration of 19.94 mg/L and 21.75 mg/L, respectively. This scenario urged the researcher to attempt synthesis of material that is likely to offer good adsorption capacity for sulphur. Following protocol of sol-gel method, transition metals (Ni, Cu, Zn) solution is gelated with tetraethoxysilane (TEOS; silica precursor) using glycerol. Fourier transform infrared spectroscopy (FTIR) spectra revealed bonding of Zn-O, Cu-O, and Ni-O by stretching vibrations at $468cm^{-1}$, $617cm^{-1}$, and $468cm^{-1}$, respectively. Thiophene and Benzothiophene mixed in n-heptane and benzene (4:1) for preparation of Model Fuels I and II, respectively. Each of silica based metal was applied as adsorbent in batch mode to assess the removal efficiency. Results demonstrated optimal desulphurization of more than 90% following efficacy order as Si-Ni > Si-Zn > Si-Cu based adsorbents. Proposed multilayered (Freundlich) adsorption mechanism follows ${\pi}$-complexation with pseudo secnd order kinetics.

키워드

참고문헌

  1. Ma X, Sprague M, Sun L, Song C. Deep desulfurization of diesel fuels by a novel integrated approach. Pittsburgh: National Energy Technology Lab.; 2002.
  2. Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today 2003;86:211-263. https://doi.org/10.1016/S0920-5861(03)00412-7
  3. Srivastava VC. An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Adv. 2012;2:759-783. https://doi.org/10.1039/C1RA00309G
  4. Yu M, Li Z, Xi H, Xia Q, Wang S. Effect of textural property of coconut shell-based activated carbon on desorption activation energy of benzothiophene. Front. Chem. Eng. China 2008;2:269-275. https://doi.org/10.1007/s11705-008-0056-6
  5. Muzic M, Sertic-Bionda K, Gomzi Z. Kinetic and statistical studies of adsorptive desulfurization of diesel fuel on commercial activated carbons. Chem. Eng. Technol. 2008;31:355-364. https://doi.org/10.1002/ceat.200700341
  6. Kim CG. Adsorption behaviour of thiophene derivatives on soil materials. Environ. Eng. Res. 2002;7: 207-217. https://doi.org/10.4491/eer.2002.7.4.207
  7. Kobayashi M, Flytzani-Stephanopoulos M. Reduction and sulfidation kinetics of cerium oxide and cu-modified cerium oxide. Ind. Eng. Chem. Res. 2002;41:3115-3123. https://doi.org/10.1021/ie010815w
  8. Hernandez-Maldonado AJ, Yang RT. New sorbents for desulfurization of diesel fuels via $\pi$-complexation. AIChE J. 2004;50:791-801. https://doi.org/10.1002/aic.10074
  9. Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 2007;46:1222-1244. https://doi.org/10.1002/anie.200602866
  10. Anedda R, Cannas C, Musinu A, Pinna G, Piccaluga G, Casu M. A two-stage citric acid-sol/gel synthesis of ZnO/$SiO_2$ nanocomposites: study of precursors and final products. J. Nanopart. Res. 2008;10:107-120.
  11. Chao MC, Lin HP, Mou CY, Cheng BW, Cheng CF. Synthesis of nano-sized mesoporous silicas with metal incorporation. Catal. Today 23004;97:81-87. https://doi.org/10.1016/j.cattod.2004.06.140
  12. Yu LY, Xu ZL, Shen HM, Yang H. Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method. J. Memb. Sci. 2009;337:257-265. https://doi.org/10.1016/j.memsci.2009.03.054
  13. Lai Y, Yin W, Liu J, Xi R, Zhan J. One-pot green synthesis and bioapplication ofl-arginine-capped superparamagnetic $Fe_3O_4$ nanoparticles. Nanoscale Res. Lett. 2009;5:302-307.
  14. Seredych M, Mabayoje O, Kolesnik MM, Krstic V, Bandosz TJ. Zinc (hydr)oxide/graphite based-phase composites: effect of the carbonaceous phase on surface properties and enhancement in electrical conductivity. J. Mater. Chem. 2012;22:7970-7978. https://doi.org/10.1039/c2jm15350e
  15. Dai W, Zhou Y, Wang S, Sub W, Sun Y, Zhou L. Desulfurization of transportation fuels targeting at removal of thiophene/benzothiophene. Fuel Process. Technol. 2008;89:749-755. https://doi.org/10.1016/j.fuproc.2008.01.002
  16. Lawal OA, Oyedeji AO. Chemical composition of the essential oils of Cyperus rotundus L. from South Africa. Molecules 2009;14:2909-2917. https://doi.org/10.3390/molecules14082909
  17. Liu X, Chun CM, Aksay IA, Shih WH. Synthesis of mesostructured nickel oxide with silica. Ind. Eng. Chem. Res. 2000;39:684-692. https://doi.org/10.1021/ie990129l
  18. Das D, Nath BC, Phukon P, Dolui SK. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf. B Biointerfaces 2013;101:430-433. https://doi.org/10.1016/j.colsurfb.2012.07.002
  19. Thekkae Padil VV, Cernik M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomedicine 2013;8:889-898.
  20. Prakasham RS, Devi GS, Rao CS, Sivakumar VS, Sathish T, Sarma PN. Nickel-impregnated silica nanoparticle synthesis and their evaluation for biocatalyst immobilization. Appl. Biochem. Biotechnol. 2010;160:1888-1895. https://doi.org/10.1007/s12010-009-8726-5
  21. Khafag MG, Mahmoud HH, Ashiry A, Israr MQ, Battisha IK. Characterization of nano-composite Ni dispersed over a silica matrix prepared by a modified sol-gel technique. Aust. J. Basic Appl. Sci. 2011;5:287-295.
  22. Roy A, Polarz S, Rabe S, et al. First preparation of nanocrystalline zinc silicate by chemical vapor synthesis using an organometallic single-source precursor. Chemistry 2004;10:1565-1575. https://doi.org/10.1002/chem.200305397
  23. Kong DY, Yu M, Lin CK, Liu XM, Lin J, Fang J. Sol-gel synthesis and characterization of $Zn_2SiO_4$:Mn@$SiO_2$ spherical core-shell particles. J. Electrochem. Soc. 2005;152:H146-151. https://doi.org/10.1149/1.1990612
  24. Shokri B, Firouzjah MA, Hosseini SI. FTIR analysis of silicon dioxide thin film deposited by metal organic-based PECVD. In: Proceedings of 19th International Symposium on Plasma Chemistry Society; 2009 Jul 26-31; Bochum, Germany. p. 26-31.
  25. Waseem M, Mustafa S, Naeem A, Shah KH, Ihsan-ul-Haque IS. Synthesis and characterization of silica gel by sol-gel method. J. Pak. Mater. Soc. 2009;3:19-21.
  26. Cordoba G, Arroyo R, Fierro JL, Viniegr M. Study of xerogel-glass transition of CuO/$SiO_2$. J. Solid State Chem. 1996;123;93-99. https://doi.org/10.1006/jssc.1996.0156
  27. Fixman EM, Abello MC, Gorriz OF, Arrua LA. Preparation of Cu/$SiO_2$ catalysts with and without tartaric acid as template via a sol-gel process: characterization and evaluation in the methanol partial oxidation. Appl. Catal. A Gen. 2007;319:111-118. https://doi.org/10.1016/j.apcata.2006.11.022
  28. Battishaa IK, Afifya HH, Ibrahim M. Synthesis of $Fe_2O_3$ concentrations and sintering temperature on FTIR and magnetic susceptibility measured from 4 to 300 K of monolith silica gel prepared by sol-gel technique. J. Magn. Magn. Mater. 2006;306:211-217. https://doi.org/10.1016/j.jmmm.2006.01.251
  29. Tian F, Wu W, Jiang Z, et al. The study of thiophene adsorption onto La(III)-exchanged zeolite NaY by FT-IR spectroscopy. J. Colloid Interface Sci. 2006;301:395-401. https://doi.org/10.1016/j.jcis.2006.05.017
  30. Garcia CL, Lercher JA. Adsorption and surface reactions of thiophene on ZSM 5 zeolites. J. Phys. Chem. 1992;96:2669-2675. https://doi.org/10.1021/j100185a050
  31. Dashnau JL, Nucci NV, Sharp KA, Vanderkooi JM. Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures. J. Phys. Chem. B. 2006;110:13670-13677. https://doi.org/10.1021/jp0618680
  32. Foresti E, Fracasso G, Lanzi M, et al. New thiophene monolayer-protected copper nanoparticles: synthesis and chemical-physical characterization. J. Nanomater. 2008;2008:1-6.
  33. Sara YY, Garcia-Martinez J, Li W, Meitzner GD, Iglesia E. Kinetic, infrared, and X-ray absorption studies of adsorption, desorption, and reactions of thiophene on H-ZSM5 and Co/H-ZSM5. Phys. Chem. Chem. Phys. 2002;4:1241-1251. https://doi.org/10.1039/b108640p
  34. Jiang M, Ng FT. Adsorption of benzothiophene on Y zeolites investigated by infrared spectroscopy and flow calorimetry. Catal. Today 2006;116:530-536. https://doi.org/10.1016/j.cattod.2006.06.034
  35. Yang X, Erickson LE, Hohn KL, Jeevanandam P, Klabunde KJ. Sol-gel Cu-Al2O3 adsorbents for selective adsorption of thiophene out of hydrocarbon. Ind. Eng. Chem. Res. 2006;45:6169-6174. https://doi.org/10.1021/ie060559t
  36. Blanco-Brieva G, Campos-Martin JM, Al-Zahrani SM, Fierro JL. Removal of refractory organic sulfur compounds in fossil fuels using MOF sorbents. Global Nest J. 2010;12:296-304.
  37. Li W, Xing J, Xiong X, Huang J, Liu H. Feasibility study on the integration of adsorption/bioregeneration of $\pi$-complexation adsorbent for desulfurization. Ind. Eng. Chem. Res. 2006;45:2845-2849. https://doi.org/10.1021/ie051125l
  38. Xue M, Wen P, Chitrakar R, Ooi K, Feng Q. Screening of inorganic adsorbents for selective adsorption of thiophene from model gasoline. Sep. Sci. Technol. 2012;47:1926-1936. https://doi.org/10.1080/01496395.2012.665116
  39. Hussain AH, Tatarchuk BJ. Adsorptive desulfurization of hydrocarbon fuels by Ag/$TiO_x$-$Al_2O_3$ adsorbents: mechanism of sulfur adsorption at ambient conditions. In: Proceedings of the 2012 AlChE Annual Meeting; 2012 Oct 28-Nov 2; Pittsburgh, PA.
  40. Kosslick H, Lischke G, Landmesser H, Parlitz B, Storek W, Fricke R. Acidity and catalytic behavior of substituted MCM-48. J. Catal. 1998;176:102-114. https://doi.org/10.1006/jcat.1998.2015
  41. Fuentes-Perujo D, Santamaria-Gonzalez J, Merida-Robles J, et al. Evaluation of the acid properties of porous zirconium-doped and undoped silica materials. J. Solid State Chem. 2006;179:2182-2189. https://doi.org/10.1016/j.jssc.2006.04.018
  42. Vilarrasa-Garcia E, Azevedo DC, Braos-Garcia P, et al. Synthesis and characterization of metal-supported mesoporous silicas applied to the adsorption of benzothiophene. Adsorpt. Sci. Technol. 2011;29:691-704. https://doi.org/10.1260/0263-6174.29.7.691
  43. Nair S, Shahadat Hussain AH, Tatarchuk BJ. The role of surface acidity in adsorption of aromatic sulfur heterocycles from fuels. Fuel 2013;105:695-704. https://doi.org/10.1016/j.fuel.2012.10.005
  44. Tabassum N, Rafique U, Balkhair KS, Ashraf MA. Chemodynamics of methyl parathion and ethyl parathion: adsorption models for sustainable agriculture. BioMed Res. Int. 2014;2014:831989.

피인용 문헌

  1. Transition metal doping of amorphous silica particles vol.19, pp.10, 2017, https://doi.org/10.1007/s11051-017-4005-5
  2. Zeolitic imidazolate framework-8 was coated with silica and investigated as a flame retardant to improve the flame retardancy and smoke suppression of epoxy resin vol.8, pp.5, 2018, https://doi.org/10.1039/C7RA12816A
  3. Glucose Conversion into 5-Hydroxymethylfurfural over Niobium Oxides Supported on Natural Rubber-Derived Carbon/Silica Nanocomposite vol.11, pp.8, 2014, https://doi.org/10.3390/catal11080887
  4. A Review on Catalytic Dehydration of Glycerol to Acetol vol.8, pp.6, 2014, https://doi.org/10.1002/cben.202100009