DOI QR코드

DOI QR Code

Optimal Value Detection of Irregular RR Interval for Atrial Fibrillation Classification based on Linear Analysis

선형분석 기반의 심방세동 분류를 위한 불규칙 RR 간격의 최적값 검출

  • Cho, Ik-Sung (Department of Information and Communication Engineering, Kyungwoon University) ;
  • Jeong, Jong-Hyeog (Department of Information and Communication Engineering, Kyungwoon University) ;
  • Cho, Young Chang (Department of Information and Communication Engineering, Kyungwoon University) ;
  • Kwon, Hyeog-Soong (Department of IT Engineering, Pusan National University)
  • Received : 2014.06.26
  • Accepted : 2014.08.14
  • Published : 2014.10.31

Abstract

Several algorithms have been developed to detect AFIB(Atrial Fibrillation) which either rely on the linear and frequency analysis. But they are more complex than time time domain algorithm and difficult to get the consistent rule of irregular RR interval rhythm. In this study, we propose algorithm for optimal value detection of irregular RR interval for AFIB classification based on linear analysis. For this purpose, we detected R wave, RR interval, from noise-free ECG signal through the preprocessing process and subtractive operation method. Also, we set scope for segment length and detected optimal value and then classified AFIB in realtime through liniar analysis such as absolute deviation and absolute difference. The performance of proposed algorithm for AFIB classification is evaluated by using MIT-BIH arrhythmia and AFIB database. The optimal value indicate ${\alpha}=0.75$, ${\beta}=1.4$, ${\gamma}=300ms$ in AFIB classification.

심방세동 검출을 위한 기존 연구방법으로는 비선형 분석법과 주파수 분석법 등을 들 수 있지만 시간 영역 알고리즘에 비해 연산이 복잡하고 불규칙한 리듬 검출에 필요한 일반적 규칙을 제공하지 못한다. 이를 위해 본 연구에서는 선형 분석 기반의 심방세동 분류를 위한 불규칙 RR 간격의 최적값 검출 방법을 제안하였다. 이를 위해 먼저 전처리과정과 차감 기법을 통해 R파를 검출하였다. 이후 불규칙 RR 간격의 세그먼트 길이에 대한 범위를 설정하고 정규화 절대 편차와 절대치와 같은 선형 분석상의 심방세동 분류를 위한 최적값을 검출하였다. 제안된 알고리즘의 타당성 평가를 위해 MIT-BIH 부정맥과 심방세동 데이터베이스를 이용하여 RR 간격의 세그먼트 길이와 최적값에 대한 심방세동 분류율을 각각 비교 실험하였다. 성능 평가 결과, RR 간격과 연속하는 RR 간격 차에 대한 최적값은 ${\alpha}=0.75$, ${\beta}=1.4$, ${\gamma}=300ms$ 일 때 제일 높은 성능을 나타나는 것을 확인할 수 있었다.

Keywords

References

  1. A. Bollmann, F. Lombardi, Electrocardiology of Atrial Fibrillation. Current Knowledge and Future Challenges, IEEE Engineering in Medicine and Biology Magazine, Vol. 25, No. 6, pp. 15-23, 2006.
  2. C. Furberg, B. Psaty, T. Manolio, J. Gardin, V. Smith, P. Rautaharju, Prevalence of atrial fibrillation in elderly subjects, The American Journal of Cardiology, Vol. 74, Issue 3, pp 236-241, 1994. https://doi.org/10.1016/0002-9149(94)90363-8
  3. 11Heeringa, J., D. A. van der Kuip, A. Hofman, J. A. Kors, G. van Herpen, B. H. Stricker, T. Stijnen, G. Y. Lip, and J. C. Witteman. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur. Heart J. 27:949-953, 2006. https://doi.org/10.1093/eurheartj/ehi825
  4. Benjamin, E. J., P. A. Wolf, R. B. D'Agostino, H. Silbershatz, W. B. Kannel, and D. Levy. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 98:946-952, 1998. https://doi.org/10.1161/01.CIR.98.10.946
  5. Wolf, P. A., R. D. Abbott, and W. B. Kannel. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 22:983-988, 1991. https://doi.org/10.1161/01.STR.22.8.983
  6. Aytemir, K., S. Aksoyek, A. Yildirir, N. Ozer, and A. Oto. Prediction of atrial fibrillation recurrence after cardioversion by P wave signal-averaged electrocardiography. Int. J. Cardiol. 70:15-21, 1999. https://doi.org/10.1016/S0167-5273(99)00038-8
  7. Clavier, L., J. M. Boucher, R. Lepage, J. J. Blanc, and J. C. Cornily. Automatic P-wave analysis of patients prone to atrial fibrillation. Med. Biol. Eng. Comput. 40:63-71, 2002. https://doi.org/10.1007/BF02347697
  8. Dotsinsky, I. Atrial wave detection algorithm for discovery of some rhythm abnormalities. Physiol. Meas. 28:595-610, 2007. https://doi.org/10.1088/0967-3334/28/5/012
  9. Duverney, D., J. Gaspoz, V. Pichot, F. Roche, R. Brion, A. Antoniadis, and J. Barthelemy. High accuracy of automatic detection of atrial fibrillation using wavelet transform of heart rate intervals. Pacing Clin. Electrophysiol. 25:457-462, 2002. https://doi.org/10.1046/j.1460-9592.2002.00457.x
  10. Ik-Sung Cho et al., "Baseline Wander Removing Method Based on Morphological Filter for Efficient QRS Detection," Journal of KIICE, vol. 17, no. 1, 2013, pp.166-174. https://doi.org/10.6109/jkiice.2013.17.1.166
  11. Ik-Sung Cho, Hyeog-Soong Kwon, "Efficient QRS Detection and PVC Classification based on Profiling Method," Journal of KIICE, vol. 17, no. 4, 2013, pp.705-711. https://doi.org/10.6109/jkiice.2013.17.3.705